
Issues in Informing Science and Information Technology Volume 9, 2012

Software Engineering Frameworks:
Perceptions of Second-Semester Students

Kirby McMaster
Fort Lewis College, Durango,

CO, USA

kmcmaster@fortlewis.edu

Samuel Sambasivam
Azusa Pacific University,

Azusa, CA, USA

ssambasivam@apu.edu

Steven Hadfield
U.S. Air Force Academy,

Colorado Springs, CO, USA

steven.hadfield@usafa.edu

Stuart Wolthuis
Brigham Young University-

Hawaii, Laie, HI, USA

stuart.wolthuis@byuh.edu

Abstract
This research examines the frameworks used by Computer Science students at the conclusion of
two semesters of study in Software Engineering. A questionnaire listing 64 Software Engineering
concepts was given to students at three universities upon completion of their second-semester
course. To identify which topics were most important, students were asked to rate each concept
on a ten-point scale. From their responses, we calculated the average perceived importance for
each concept. This paper analyzes the results of the survey. We also compare these concept rat-
ings to similar ratings obtained earlier from a sample of first-semester Software Engineering stu-
dents. Using both data sets, we describe how Software Engineering perceptions evolve as stu-
dents progress through a two-semester course sequence. This knowledge can be valuable to Soft-
ware Engineering instructors as they decide which concepts to emphasize and how to unite these
concepts into a consistent, meaningful framework.

Keywords: Software Engineering, framework, schema, paradigm, mental model, concept, rating.

Introduction
Learning is more effective in a Computer Science course if topics and concepts are organized
within an overall mental framework. Each concept is introduced as a piece of a puzzle. The
framework allows the pieces to fit together into a meaningful whole. Other similar terms used by
authors include schema, cognitive style, paradigm, and mental model.

According to Donald (2002), a course
needs a schema to improve understand-
ing.

A schema ... is a data structure of ge-
neric concepts stored in memory and
containing the network of relationships
among the constituent parts.... If we are
to understand the relationships between
concepts, we need to know in what or-

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

mailto:kmcmaster@fortlewis.edu
mailto:ssambasivam@apu.edu
mailto:steven.hadfield@usafa.edu
mailto:stuart.wolthuis@byuh.edu
mailto:Publisher@InformingScience.org

Software Engineering Frameworks

der and how closely concepts are linked and the character of the linkage.

Which schema is preferable for a given course? In an ideal world, course concepts would blend
naturally into the general mental framework of each student. In The Mathematical Experience,
Davis and Hersh (1981) observe that:

People vary dramatically in what might be called their cognitive style, that is, their primary
mode of thinking.

Ken Bain (2004) emphasizes the ubiquity of frameworks in education when he states:

The students bring paradigms to the class that shape how they construct meaning. Even if they
know nothing about our subjects, they still use an existing mental model of something to build
their knowledge of what we tell them.

Frameworks, explicit or implicit, are available for most Computer Science courses. Some courses
organize primary concepts into a layered framework, where services received at one layer are
provided by algorithms and data structures in a lower layer. Computer network courses favor lay-
ers consisting of some blend of the OSI Model and the Internet Protocol Suite (Tanenbaum &
Wetherall, 2011). Operating systems courses include topics from the hardware, kernel, system
services, and user-interface layers (Silberschatz, Galvin, and Gagne, 2008). Database courses in-
sert a DBMS layer between application programs and operating system files (Connolly & Begg,
2009).

Not all Computer Science frameworks are layered. A common framework for object-oriented
programming (Lafore, 2001) includes groups of interrelated classes, arranged according to estab-
lished design patterns (Gamma, Helm, Johnson, & Vlissides, 1994). Data structures course topics
are divided into algorithm and data structure categories, such as stacks, queues, linked lists,
searching, and sorting (Lafore, 2002). Artificial intelligence utilizes a variety of frameworks that
describe search strategies, game playing, learning models, knowledge-based systems, and intelli-
gent agents (Russell & Norvig, 2009).

But which frameworks are suitable for Software Engineering (SE) courses? The most common
SE framework is a horizontal life-cycle sequence of stages for software development (McConnell,
2004; Sommerville, 2004). Some SE textbooks add a vertical dimension, separating the user in-
terface, algorithms/business rules, and data components (Pressman, 2009). Other SE books pro-
mote a quasi-religious experience that endorses a particular development practice (Beck &
Andres, 2004; Cockburn, 2006; Jacobson, Booch, & Rumbaugh, 1999; Beck, 2004).

In previous research (McMaster, Hadfield, & Anderson, 2008), we examined frameworks for
software development from the viewpoint of textbook authors. We determined which words are
used frequently in three samples of books: object-oriented programming, database, and Software
Engineering. Our assumption was that the words used most often in a book suggest the frame-
work of the author. A framework is certainly more than a set of concepts, but concepts are the
building blocks used to construct frameworks. Frameworks help highlight and integrate the mean-
ing of the concepts.

In this study, we sought to determine which concepts are considered most important by students
after they had completed their second SE course (SE-II). We examined whether their concept rat-
ings were consistent among students within a course. We also compared concept ratings across
courses taught by different instructors at different schools.

The remainder of this paper is organized as follows. First, we present our methodology for gath-
ering data on student ratings of SE concepts. Next, we analyze the results to determine which
concepts students perceive as most important. We then look at ratings variation within courses
and between schools. Last, we compare the second-semester SE ratings with ratings obtained in

318

McMaster, Sambasivam, Hadfield, & Wolthuis

an earlier study of first-semester SE (SE-I) students (McMaster, Hadfield, Wolthuis, & Sam-
basivam, 2011).

Methodology
A questionnaire listing 64 Software Engineering concepts was given to Computer Science stu-
dents upon completion of their second SE course. All but one of the concepts are described by a
single word or acronym (e.g. agile, design, quality, UML). The concept use case is presented as a
word pair.

These concepts were selected from a variety of sources. First, we chose topics that appeared in
Amazon concordances of Software Engineering books. The concordances list the 100 most fre-
quent words (excluding common English words) in the books. We supplemented the concordance
words with topics we felt were important, along with words recommended by other SE instruc-
tors. To encourage responses at the low end of the scale, we intentionally added several words
that are not SE-specific (e.g. activity, language). Once the word list was compiled, the concepts
were randomized so that there would be no implied significance to the order in which the con-
cepts were presented to students.

The concept list was included on a survey given to samples of SE-II students at three schools. The
School-1 sample consisted of 11 students at a small state university. The School-2 sample in-
cluded 16 students from a small private college. The School-3 sample of 16 students was drawn
from a larger private university. The combined sample size is 43. Almost all students were juniors
or seniors. The course sections had different instructors and textbooks, but each sample of stu-
dents received a traditional, project-oriented SE-II course.

To identify which SE concepts were valued most, students were asked to rate each concept on a
10-point scale, with 1 indicating “least important” and 10 indicating “most important”. From the
responses, we determined the average perceived importance for each concept at each school.

We found that the means for the 64 concepts differed in a biased way between the three schools.
To make the data for the samples comparable, we rescaled (standardized) the concept means for
each school, so that the three sets of 64 concept means had the same average (7.20) and standard
deviation (1.00). This rescaling changed the concept means only slightly.

We did not rescale individual student ratings. Rather, we rescaled the mean ratings in a way that
preserved the ordering of concepts within each school. We could have achieved a similar result
by converting the means to ranks, but then the concepts would have been equally spaced (except
for ties).

After gathering and transforming the survey results, we had two sets of data to analyze and com-
pare: (1) the concept ratings from SE-II students as described above, and (2) similar ratings from
a previous study of SE-I students using the same SE concepts questionnaire. We first examine
the SE-II concept ratings for the three schools, both separately and combined. Next, we look at
the ratings variation for each concept within courses and between schools. Finally, we compare
the combined SE-II ratings with concept ratings collected earlier from SE-I students.

Concept Ratings
In this section, we analyze the concept ratings for the three SE-II student samples. Table 1 pre-
sents the 20 top-rated Software Engineering concepts (out of 64), along with the rescaled means
for School-1, School-2, and School-3. We include a column showing the average rating of each
concept for the combined sample. The combined averages are weighted, so the two larger sam-
ples have a slightly greater effect on the results. The concepts are listed in decreasing order, based
on combined rating.

319

Software Engineering Frameworks

Table 1. Top 20 concepts for SE-II students.

SE Concept

School-1

N = 11

School-2

N = 16

School-3

N = 16

Combined

Rating

implementation 9.39 9.09 8.66 9.01

team 8.90 7.80 9.02 8.53

development 8.41 8.37 8.30 8.35

design 9.39 8.08 7.81 8.32

quality 8.49 7.15 8.90 8.14

integration 7.11 8.23 8.54 8.06

analysis 7.19 8.81 7.81 8.02

test 7.28 8.37 8.18 8.02

architecture 8.33 7.87 7.93 8.01

requirement 7.36 8.52 7.93 8.00

schedule 7.44 7.72 8.54 7.95

organization 8.41 8.01 7.57 7.95

software 6.06 8.08 9.02 7.92

algorithm 7.93 5.99 9.63 7.84

interface 9.06 7.80 6.96 7.81

customer 8.17 7.51 7.81 7.79

specification 6.38 8.23 8.18 7.74

class 7.76 8.08 7.33 7.72

project 7.93 7.22 7.93 7.67

performance 7.44 8.37 6.96 7.61

A visual inspection of the three schools in Table 1 reveals modest rating similarities for the con-
cepts. In this table, the 10 highest rated concepts, all with combined ratings above 8.00, are im-
plementation, team, development, design, quality, integration, analysis, test, architecture, and
requirement. The above list is dominated by core concepts that appear in the first three SE life-
cycle phases, with quality applying to all phases. The breadth of this list might reflect that stu-
dents had been working on team projects throughout the semester. All of the concepts in Table 1
have combined ratings above 7.60. The remaining 44 concepts having combined ratings below
7.60 are not shown in this table.

Another way to view these results is with an ordered list of the 10 highest-rated concepts for each
school. These three lists are presented in Table 2. Only two concepts--implementation and devel-
opment--are included in the Top-10 lists for all three schools. The concepts team, quality, test,
integration, and specification are listed for two of the schools. We note that test and specification
tied for 10-th place in the School-3 ratings, giving that school a Top-11 list. The remaining con-
cepts in Table 2 appear only once.

We can gather the five top-rated words at each school into brief descriptions of how the SE-II
courses differ:

School-1: Design, implementation, data, interface, and maintenance are most important.

School-2: Implementation, analysis, information, database, and requirement are rated highest.

320

McMaster, Sambasivam, Hadfield, & Wolthuis

School-3: Algorithm, software, team, quality, and implementation are emphasized.

The students at all three schools agreed on the importance of implementation, especially while
they were the final stages of completing their semester-long projects.

Table 2. Top 10 SE-II concepts by school.

Rank School-1 School-2 School-3

1 design 9.39 implementation 9.09 algorithm 9.63

2 implementation 9.39 analysis 8.81 software 9.02

3 data 9.14 information 8.59 team 9.02

4 interface 9.06 database 8.52 quality 8.90

5 maintenance 9.06 requirement 8.52 implementation 8.66

6 team 8.90 development 8.37 integration 8.54

7 quality 8.49 performance 8.37 schedule 8.54

8 development 8.41 test 8.37 development 8.30

9 organization 8.41 integration 8.23 prototype 8.30

10 architecture 8.33 specification 8.23 test/specification 8.18

Among the bottom 44 concepts (not in Table 1), five received combined ratings below 6.00: lan-
guage (5.92), domain (5.92), state (5.65), pattern (5.60), and formal (4.81). There are several
possible reasons why a concept received a low rating.

Some low-rated concepts apply primarily to early stages in the software development life cycle,
such as incremental (6.48), tool (6.30), diagram (6.27), and problem (6.00). These concepts pre-
sumably would receive more emphasis in a SE-I course. Some concepts appear late in the life
cycle, such as deployment (7.14), maintenance (7.12), validation (6.93), and verification (6.74),
so they might receive delayed emphasis in a SE-II course.

Other concepts relate to a specific technology, so they are less likely to receive sustained focus
throughout a semester. This includes concepts such as use case (7.15), UML (6.81), pattern
(5.60), and formal (4.81). And, as mentioned earlier, some concepts are fairly general rather than
SE-specific, such as document (6.85), change (6.58), activity (6.38), discipline (6.01), language
(5.92), and state (5.65). This might have affected the ratings of these concepts.

For most of the 64 concepts, the mean ratings for the three schools are moderately consistent. The
correlation coefficients between pairs of schools range from 0.361 (School-1 vs. School-3) to
0.431 (School-1 vs. School-2). For School-2 vs. School-3, the correlation is 0.387. These values
suggest a small positive relationship between the concept ratings for the separate samples. The
fact that the correlations are not larger indicates that notable differences in perceptions exist be-
tween the three SE-II courses. We examine sources of this variation in the next section.

Ratings Variation
We collected concept ratings from students in second-semester SE courses at three schools. The
previous section focused on ratings differences between SE concepts, especially with respect to
concepts that are considered most important by students. In this section, we describe how ratings
vary for each concept.

321

Software Engineering Frameworks

Within-School Variation
The variability in ratings for each SE concept can be divided into two sources: within-schools and
between-schools. We are primarily interested in between-school variation, which better reflects
which concepts are emphasized by instructors in their courses. We examine within-school
variation as a reference point for evaluating differences between courses, as well as to judge the
level of agreement among students in their concept ratings.

For each of the 64 SE concepts, we calculated the standard deviation for student ratings within
each course. Rather than present individual values of these statistics, we summarize the
distribution of variation by school in Table 3.

Table 3. Summary of within-school ratings variation
for individual concepts at each school.

Statistic School-1 School-2 School-3

Min Std Dev 0.94 1.01 0.51

Max Std Dev 2.94 3.37 2.36

Avg Std Dev 2.01 2.10 1.21

The 192 (= 64*3) standard deviations ranged from a low of 0.51 (School-3) to a high of 3.37
(School-2). The average standard deviation value is near 2.0 at School-1 and School-2, but is
much smaller for School-3. A "typical" standard deviation of 2.0 represents a relatively large
amount of variation for a 10-point scale, considering that most scores fall within two standard
deviations (plus or minus 4.0) from the mean.

The above table describes how SE-II students' ratings varied across all concepts within each
school. We also wanted to determine which concepts were rated most consistently by students
within the schools. To do this, we calculated a pooled within-school standard deviation for each
concept. The concepts having pooled standard deviations below 1.50, along with their combined
ratings, are listed in Table 4.

Table 4. Concepts having the smallest within-school ratings variation.

Topic/Concept
Pooled
Std Dev

Combined
Rating

implementation 0.95 9.01

team 1.32 8.53

development 1.34 8.35

specification 1.36 7.74

component 1.37 6.89

maintenance 1.38 7.12

software 1.42 7.92

function 1.47 7.55

application 1.51 7.24

interface 1.53 7.81

322

McMaster, Sambasivam, Hadfield, & Wolthuis

A relatively small standard deviation indicates that students within each school gave similar rat-
ings for a concept. The concept having the smallest within-school variation is implementation,
with a pooled standard deviation of 0.95. Other concepts with low variation are team, develop-
ment, specification, component, and maintenance.

Consistent ratings are not equivalent to high ratings, although implementation is the highest-rated
concept and has the smallest pooled standard deviation. However, 9 of the 10 concepts in Table 4
have average ratings above 7.0. Only component has a rating below 7.0.

The concepts having the largest pooled within-school standard deviations are listed in Table 5. A
large pooled standard deviation suggests a lack of agreement among students on the importance
of a concept. The concept having the largest within-school variation is problem, with a pooled
standard deviation of 2.52. Other concepts with high variation are formal, algorithm, and engi-
neering.

Table 5. Concepts having the largest within-school ratings variation.

Topic/Concept

Pooled

Std Dev

Combined

Rating

diagram 2.16 6.27

state 2.17 5.65

change 2.21 6.58

database 2.21 7.37

document 2.22 6.85

tool 2.23 6.30

engineering 2.37 7.25

algorithm 2.42 7.84

formal 2.42 4.81

problem 2.52 6.00

Only three of the Table 5 concepts--algorithm, database, and engineering--have ratings above
7.00. The other seven concepts have ratings below 7.00, and formal has the lowest rating of all
concepts. For all 64 concepts, the correlation between combined ratings and pooled within-school
variation is -0.645. This negative relationship suggests that student ratings are more consistent for
the higher-rated concepts.

Between-School Variation
We now summarize the variation in ratings between schools in terms of patterns for concept
means. Table 6 lists the SE concepts for which the between-school ratings showed the largest dif-
ferences. We performed a one-way Analysis-of-Variance (ANOVA) for each concept, calculating
the Between Mean-Square (BMS), Within Mean-Square (WMS), and F-ratio. Degrees of freedom
for the F-statistic are 2 for BMS and 40 for WMS.

323

Software Engineering Frameworks

Table 6. ANOVA for concept rating differences between schools.

SE Concept

School-1

N = 11

School-2

N = 16

School-3

N = 16

Between

Mean Sq

Within

Mean Sq

F-ratio

(p<.01)

maintenance 9.06 7.15 5.75 35.72 1.89 18.88

software 6.06 8.08 9.02 29.01 2.02 14.34

algorithm 7.93 5.99 9.63 52.95 5.86 9.04

specification 6.38 8.23 8.18 13.54 1.85 7.33

data 9.14 7.15 6.60 22.27 3.48 6.39

interface 9.06 7.80 6.96 14.34 2.34 6.13

cost 7.28 8.16 5.63 26.14 4.48 5.84

user 8.09 8.01 6.11 18.69 3.29 5.68

Our methodology does not justify the usual ANOVA probability model for testing differences
between group means. Our samples at each school were not random (as in survey research), and
we did not randomly assign students to the three groups (as in experimental design). Neverthe-
less, the concepts listed in Table 6 exhibited the largest sample differences as measured by the F-
statistic. If the ANOVA model were appropriate, the significance level for each of the above con-
cepts would be less than 0.01 (for individual tests).

The three concepts with the largest F-statistic values are maintenance, software, and algorithm.
For these concepts, the range between highest and lowest sample means is 2.96 or greater. This
suggests that the perceived importance of these concepts varies widely at the three schools, per-
haps due to differences in course content or instructor emphasis.

When a large variation is obtained from three values, several patterns are possible:

1. One value can be much higher than the other two. For example, data (9.14) at School-1.

2. One value can be much lower than the other two. For example, software (6.06) and specifica-
tion (6.38) at School-1; cost (5.63) and user (6.11) at School-3.

3. The values can be evenly spread, with the middle value spaced about equally between the high
and low values. For example, maintenance (5.75 < 7.15 < 9.06), algorithm (5.99 < 7.93 <
9.63), interface (6.96 < 7.80 < 9.06).

We can look vertically at the concept ratings in Table 6 to view the distinct ratings patterns for
each school. From this perspective, School-1 ratings are high for data, maintenance, and inter-
face, but low for software and specification. School-2 ratings are low for algorithm. School-3 is
high for algorithm and software, but low for cost, maintenance, and user.

SE-II vs. SE-I Student Ratings
The previous sections of this paper have presented an analysis of concept ratings collected from
second-semester Software Engineering (SE-II) students. In an earlier study (McMaster, et al,
2011), we used the same questionnaire to obtain concept ratings from first-semester Software En-
gineering (SE-I) students. In this section, we compare the results from the two studies to deter-
mine how concept ratings change over a two-semester course sequence.

The concept ratings from the SE-I students were drawn from three schools, only one of which
was part of our SE-II study. No students appeared in both studies. The ratings for the 64 SE con-
cepts in the SE-I data were standardized in the same manner as the current research. That is, the

324

McMaster, Sambasivam, Hadfield, & Wolthuis

concept ratings for each school were rescaled to a mean of 7.20 and a standard deviation of 1.00.
This consistent rescaling allows a meaningful comparison of the SE-I and SE-II data sets.

4.0

5.0

6.0

7.0

8.0

9.0

4.0 5.0 6.0 7.0 8.0 9.0

SE I Ratings

S
E

 II
 R

at
in

g
s

Figure 1: Concept ratings for SE-I vs. SE-II students.

The pairs of SE-I and SE-II combined ratings for the 64 concepts are displayed graphically as a
scatter diagram in Figure 1. A strong positive relationship between the two sets of ratings is ap-
parent. The correlation coefficient between SE-I ratings and SE-II ratings is 0.770. Thus, there is
a substantial amount of agreement in SE combined ratings over the two semesters.

We wanted to learn how student perceptions about SE concepts changed over two semesters. In
particular, we were interested in which concepts showed the largest changes, both increases and
decreases. Table 7 lists the 12 concepts having a rating increase from SE-I to SE-II of 0.50 or
greater (on the standardized scale).

Table 7. Largest concept rating increases from SE-I to SE-II.

SE Concept
SE-I

Rating

SE-II

Rating

Change

SE-II - SE-I

integration 6.59 8.06 1.47

schedule 6.97 7.95 0.99

change 5.72 6.58 0.86

algorithm 7.00 7.84 0.84

team 7.71 8.53 0.83

architecture 7.19 8.01 0.82

framework 6.35 7.14 0.79

specification 6.96 7.74 0.78

class 7.00 7.72 0.72

implementation 8.32 9.01 0.69

discipline 5.33 6.01 0.68

deployment 6.57 7.14 0.58

325

Software Engineering Frameworks

The concept that showed the largest ratings increase is integration (+1.47). Other concepts with
large increases include schedule (+0.99), change (+0.86), algorithm (+0.84), team (+0.83), and
architecture (+0.82). Most of these concepts are clearly relevant for SE-II students who have
been working as teams on a semester-long project. Interestingly, four mostly SE-I concepts (ar-
chitecture, framework, specification, and class) went up in SE-II ratings. One might optimisti-
cally think that the students realized the importance of these concepts as they moved further along
in their development efforts.

Regarding concept ratings that dropped, Table 8 lists the 10 concepts having a rating decrease
from SE-I to SE-II of 0.50 or greater (in magnitude).

Table 8. Largest concept rating decreases from SE-I to SE-II.

SE Concept
SE-I

Rating
SE-II

Rating
Change

SE-II - SE-I

diagram 7.63 6.27 -1.36

problem 7.15 6.00 -1.15

user 8.29 7.33 -0.96

solution 7.94 7.10 -0.84

language 6.56 5.92 -0.64

requirement 8.60 8.00 -0.60

test 8.59 8.02 -0.57

design 8.87 8.32 -0.55

code 7.41 6.87 -0.54

product 7.64 7.14 -0.50

Two of these concepts have ratings decreases of magnitude 1.0 or greater: diagram (-1.36) and
problem (-1.15). Two other concepts with large ratings decreases include user (-0.96), and solu-
tion (-0.84).

One could argue that concepts such as problem, requirement, design, and diagram relate more to
analysis and design phase activities. As a result they might receive less emphasis at the end of the
SE-II course, when students are under pressure to deliver working software. However, code and
test should be of greater importance in the SE-II course. Another note of interest is that SE-II stu-
dents see users as less important. This might be due to a lack of "real users" in their SE-II pro-
jects. On the other hand, real world projects often fail to keep users actively involved in the later
stages of the development process.

A closer look at Table 7 and Table 8 reveals an interesting pattern. For the 12 concepts with the
largest rating increases, 10 have a SE-I rating below the mean of 7.20. On the other hand, only 2
of the 10 concepts with the largest rating decreases have an SE-I rating below 7.20. A partial

explanation for this pattern is that a concept with a high SE-I rating has less room for an increase,
and more room for a decrease.

A more detailed description of this phenomenon is presented in Table 9. This table shows the
number of concept rating increases and decreases for the 64 SE-I ratings values grouped into five
intervals.

326

McMaster, Sambasivam, Hadfield, & Wolthuis

Table 9. Concept rating changes from SE-I to SE-II.

Change to SE-II
SE-I
<6.50

6.50 -
6.99

7.00 -
 7.49

7.50 -
7.99

SE-I
>=8.00

Increase 7 10 8 4 2

Decrease 5 2 6 13 7

Avg Change 0.21 0.36 0.02 -0.26 -0.30

Note that higher SE-I ratings lead to more rating decreases. This pattern is less likely to apply to
concepts having an initial low SE-I rating. It appears that concepts at extreme ends of the SE-I
scale tend to move (regress) toward the center of the SE-II scale.

Summary and Conclusions
The primary purpose of this research was to identify concepts that are considered most important
to students after a second-semester Software Engineering course. These concepts presumably
would be used by students to construct mental frameworks for Software Engineering. A suitable
framework can help SE students integrate course topics a meaningful way to promote learning
and understanding.

In this study, we asked students in second-semester SE courses at three schools to rate the relative
importance of 64 concepts. After standardizing the data at each school, we obtained relatively
consistent SE concept ratings. The five top-rated concepts, based on averages across the three
schools, are implementation, team, development, design, and quality. The first four concepts rep-
resent middle life-cycle activities, performed while working on team projects. Quality is impor-
tant during all stages of software development. Concepts that apply primarily to early stages, in-
volve a specific technology, or are not SE-specific tend to have lower ratings.

We calculated within-school variation to see how consistently the students rated the SE concepts.
We also examined the variation between schools to measure the effect of course differences on
the ratings. The top-rated concept implementation had the smallest variation within courses, indi-
cating substantial agreement among the students. The concepts with the largest differences be-
tween schools were maintenance, software, and algorithm, suggesting varying emphasis on these
topics at the three schools.

The concept ratings for second-semester SE students, when compared to ratings by first-semester
students (obtained in an earlier study), showed a strong positive relationship. The concepts having
the largest rating increases during the second semester were integration and schedule. The largest
decreases were for diagram, problem, and user. Rating increases and decreases indicate changes
in relevance as different life-cycle activities are performed during the two-course SE sequence.
One overall change pattern was a tendency for ratings to regress toward the mean in the second
semester. That is, concepts with high first-semester ratings often dropped, while low first-
semester ratings tended to increase.

This study focused on student ratings for individual Software Engineering concepts. Subsequent
research is planned to examine how students mentally assemble these concepts into effective
frameworks.

What can Software Engineering instructors do with this research? They can compare the concept
ratings reported in this paper with the concepts they feel are most relevant for their students. SE
instructors can also reflect on how they integrate their preferred concepts into course frameworks.

327

Software Engineering Frameworks

Future Research
Future research includes a replication of the first-semester and second-semester studies with lar-
ger samples to confirm our preliminary findings. SE instructors will also be questioned to dis-
cover which concepts they believe are most important. We will can then better assess how closely
student ratings match those of their instructors.

We especially want to study how students organize the individual SE concepts into meaningful
frameworks. Which mental dimensions do they apply in linking and grouping the concepts? Are
life-cycle phases or software architecture levels important components of their frameworks?
What other relevant organizing criteria are used? Obtaining visual representations of student
frameworks would be of particular interest.

References
Bain, K. (2004). What the best college teachers do. Harvard University Press.

Beck, K. (2002). Test-driven development: By example. Addison-Wesley.

Beck, K., & Andres, C. (2004). Extreme programming explained: Embrace change (2nd ed). Addison-
Wesley.

Cockburn, A. (2006). Agile software development: The cooperative game (2nd ed). Addison-Wesley.

Connolly, T., & Begg, C. (2009). Database systems: A practical approach to design, implementation and
management (5th ed). Addison-Wesley.

Davis, P., & Hersh, R. (1981). The mathematical experience. Birkhauser.

Donald, J. (2002). Learning to think. Jossey-Bass.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: Elements of reusable object-
oriented software. Addison-Wesley.

Jacobson, I, Booch, G., & Rumbaugh, J. (1999). The unified software development process. Addison-
Wesley.

Lafore, R. (2001). Object-oriented programming in C++ (4th ed). Sams.

Lafore, R. (2002). Data structures and algorithms in Java (2nd ed). Sams.

McConnell, S. (2004). Code complete: A practical handbook of software construction (2nd ed). Microsoft
Press.

McMaster, K., Rague, B, Hadfield, S., & Anderson, N. (2008). Three software development gestalts. In
The Proceedings of the Information Systems Education Conference 2008, v 25 (Phoenix).

McMaster, K., Hadfield, S., Wolthuis, S., & Sambasivam, S. (2011). Software engineering frameworks:
Textbooks vs. student perceptions. In The Proceedings of ISECON 2011, v28 (Wilmington, NC).

Pressman, R. (2009). Software engineering: A practitioner's approach (7th ed). McGraw-Hill.

Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed). Prentice Hall.

Silberschatz , A., Galvin, T., & Gagne, G. (2008). Operating system concepts. Wiley.

Sommerville, I. (2004). Software engineering (7th ed). Addison-Wesley.

Tanenbaum, A. & Wetherall, D. (2011). Computer networks (5th ed). Prentice Hall.

328

McMaster, Sambasivam, Hadfield, & Wolthuis

329

Biographies
Dr. Kirby McMaster recently retired from the Computer Science De-
partment at Weber State University. To remain active, he is currently a
visiting professor in Computer Science and Information Systems at
Fort Lewis College in Durango, Colorado. His primary research inter-
ests are in database systems, software engineering, and frameworks for
Computer Science and Mathematics.

Dr. Samuel Sambasivam is Chairman and Professor of the Computer
Science Department at Azusa Pacific University. His research interests
include optimization methods, expert systems, client/server applica-
tions, database systems, and genetic algorithms. He served as a
Distinguished Visiting Professor of Computer Science at the United
States Air Force Academy in Colorado Springs, Colorado for a year.
He has conducted extensive research, written for publications, and de-
livered presentations in Computer Science, data structures, and
Mathematics. He is a voting member of the ACM and is a member of
the Institute of Electrical and Electronics Engineers (IEEE).

Dr. Steve Hadfield is an Associate Professor of Computer Science at
the United States Air Force Academy in Colorado Springs, Colorado.
He has taught at the Academy for nineteen years in both the depart-
ments of Computer Science and Mathematical Sciences and currently
serves as the curriculum chair for Computer Science. He earned his
Ph.D. in Computer Science from the University of Florida in 1994.
His research interests include software engineering, software assur-
ance, and Computer Science education.

ed

Stuart L. Wolthuis is Assistant Professor in the Computer & Informa-
tion Sciences Department at Brigham Young University--Hawaii. His
teaching focus includes software engineering, HCI and information
assurance. He brings almost 24 years of service in the USAF to the
classroom with real world experiences as a program manager and
software engineer. When not enjoying Hawaii’s great outdoors, his
research interests include melding together information systems and
marine biology. His current project, Ocean View, will link land-lock
educators and students to live underwater ocean views via an educa-
tional website.

	Software Engineering Frameworks: Perceptions of Second-Semester Students
	Kirby McMasterFort Lewis College, Durango, CO, USA
	Samuel SambasivamAzusa Pacific University, Azusa, CA, USA
	Steven HadfieldU.S. Air Force Academy, Colorado Springs, CO, USA
	Stuart WolthuisBrigham Young University-Hawaii, Laie, HI, USA

	Abstract
	Introduction
	Methodology
	Concept Ratings
	Ratings Variation
	Within-School Variation
	Between-School Variation

	SE-II vs. SE-I Student Ratings
	Summary and Conclusions
	Future Research

	References
	Biographies

