
Issues in Informing Science and Information Technology Volume 9, 2012

Teaching Undergraduate Software Engineering
Using Open Source Development Tools

Scott Teel, Dino Schweitzer, and Steve Fulton
United States Air Force Academy, Colorado, USA

scott.teel@usafa.edu, dino.schweitzer@usafa.edu,
steven.fulton@usafa.edu

Abstract
Software engineering is a key topic in computing education. Many schools offer a project-
oriented course, or multi-course sequence, to teach students both the theoretical concepts of soft-
ware development as well as the practical aspects of developing software systems in a team envi-
ronment. Typically, in these courses, students practice the principles of requirements analysis,
project management, a development methodology, and effective teamwork through a small-to-
medium software project. For such a course to maintain its currency and relevancy, it is impor-
tant for students to be exposed to current tools and techniques for software development. Capa-
bilities, such as project management, requirements tracking, configuration management, collabo-
ration tools, and team communication are ideally experienced in a hands-on manner as part of the
project. Commercial tools can be cost-prohibitive and difficult to learn to use effectively in a one
or two semester course. At our institution, we investigated the use of open source software de-
velopment tools that were easy to learn, transferable to other classes to enhance their perceived
value to the student, and could be easily integrated into the existing project-oriented two-course
sequence in software engineering. This paper describes the tools and their integration in the
course, our experience, student’s reactions, and compares the results to previous course offerings.

Keywords: Software engineering education, open source tools

Introduction
The computing sciences are complex fields that combine both theoretical and practical compo-
nents. Students successfully completing an undergraduate computer science program should have
instruction in both the mathematical and theoretical foundations of computing as well as the more
practical aspects of how to effectively use computers to solve problems. Software engineering, as
its name implies, is more directed toward the practical aspects of how to successfully develop
complex software systems that meet user requirements and are reliable, usable, and maintainable.
Computing Curricula 2005 recognizes the need for more extensive education to produce profes-

sional software engineers than what can
be reasonably provided in a typical
computer science program (ACM,
2005). As such, they propose software
engineering be treated as a totally sepa-
rate discipline within computer science
education. However, while there has
been some debate about the exact role
software engineering should have in a
computer science program (Curran,
2003), the ACM Curricula has main-

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

mailto:scott.teel@usafa.edu
mailto:dino.schweitzer@usafa.edu
mailto:steven.fulton@usafa.edu
mailto:Publisher@InformingScience.org

Teaching Undergraduate Software Engineering

tained the importance of software engineering to all computer science students and has kept it as a
core element in computer science education (ACM, 2008).

For purposes of this paper, we will focus on the teaching of software engineering within the com-
puter science discipline. Unlike other topics in the computer science major, the techniques and
principles taught in software engineering are often first developed and refined in industry before
arriving in the classroom. As commercial software development techniques and tools evolve, so
pedagogical methodologies change.

Computer science educators have taken different approaches to teaching software engineering
over the years, both as a result of changing methodologies as well as individual beliefs about
what teaching methods work best in a particular academic environment.

This paper is a case study in applying current productivity tools (specifically Redmine) in a soft-
ware engineering course at our institution. The objectives of the study are to investigate how to
integrate the tools into the existing structure and evaluate their impact. We describe our experi-
ence in recently changing our approach to teaching software engineering to be more aligned with
current tools and how to effectively use them in an academic environment. The paper begins
with an overview of software engineering teaching methods, then describes our traditional ap-
proach and motivation for changing, how the new approach was integrated into the course, our
experience with the change, and, finally, our plans for the future

Software Engineering Education

Background
Software Engineering is defined as the “application of a systematic, disciplined, quantifiable ap-
proach to the development, operation and maintenance of software” (Petkovic, Thompson, &
Todtenhoefer, 2006, p. 294). The need to teach software engineering in colleges has been identi-
fied for decades. Stiller & LeBlanc (2002) point out as far back as the early 1990’s, ACM Com-
puting Curricula suggested that the at least one software engineering course should be required in
accredited computer science programs. They point out that the number of large software projects
in industry demand this and suggest that the proof of the success of these accredited computer
science programs should be seen in the reduction of failure in the design and operation of large
computer programs. Software engineering programs can be thought of as a replacement for the
old apprenticeship programs which taught the trades to workman (Stroulia, Bauer, Craig, Reid, &
Wilson, 2011). The issue, however, is how to bring this effect into the classroom. Many educa-
tors feel that current practices of teaching software engineering are not adequately preparing stu-
dents for the real world of software development. Nurkkala & Brandle (2011) summarize the
problems with current teaching approaches:

 No product – students are creating projects, not commercial grade products

 Short duration – single semester, or two-semester, courses impose an artificial time con-
straint

 High turnover – new students each semester means the talent pool remains shallow and
student skills are not developing based on previous experience

 Low complexity – by necessity given time constraints and skill sets

 No maintenance – as a result of short duration, students do not experience a key aspect of
software development, the maintenance phase

 No customer – most software engineering projects do not interface with a real customer

64

Teel, Schweitzer, & Fulton

To address these shortcomings, different approaches to teaching software engineering have
emerged and been proposed in the literature.

One of the driving issues in how software engineering is taught is current trends in industry soft-
ware development practices. For many years since early 1970’s, the “waterfall model” life-cycle
was considered the most successful for a structured approach to software development. Popular
textbooks espoused its techniques and students were taught its methods. Subsequently, focus was
placed on more incremental approaches such as spiral development (Clinton, 1998) and rapid pro-
totyping (Boehm, 2006). More recently, techniques such as extreme programming (LeJeune,
2006), agile programming (Lu & DeClue, 2011), and software performance in programming
(Dugan, 2004) have been incorporated in the educational experience. Some universities have
courses which focus on programming techniques versus software engineering processes and team
work (Petkovic et al., 2006). Regardless of the exact methodology taught, one common element
of teaching of software engineering classes is the use of a final group project. These projects are
typically multi-team (and, more and more, multiple school programs) which allow students to
participate in a team environment similar to what they will find in the ‘real world’ (Coppit &
Haddox-Schatz, 2005; Rusu et al., 2009; Stiller & LeBlanc, 2002; Stroulia et al., 2011). Learning
to work in teams is identified as a student outcome in the IEEE Curriculum Guidelines for Soft-
ware Engineering (IEEE, 2004).

Other proposed methods for teaching software engineering include the use of formal methods
(Liu et al, 2009). Deveaux et al, (1999) suggest focusing on the documentation of the process
versus the software itself. The claim is that it is difficult to achieve a large enough project in an
academic course to make software engineering meaningful, but that a “docware” approach
teaches sound principles. Li (2009) successfully applied the Unified Process methodology in
teaching students. Pandey (2009) advocates the use of competition to teach development princi-
ples. In more novel approaches, Navarro & Hoek (2004) and Shaw & Dermoudy (2005) created
single player games in which students take on the role of project manager of a team of develop-
ers. Many educators have looked at ways of defining meaningful projects that are realistic, do-
able, yet large enough to require the use of software engineering techniques. For example, Al-
zamil (2005) describes the use of carefully selected semi-professional organizations and projects
from the local community that can act as real customers.

Another issue in software engineering education that has been addressed by several educators is
how to motivate students to appreciate the importance of software engineering. Stiller and
LeBlanc (2002) suggest that the complex and challenging nature of software engineering make
the effectiveness of such courses difficult and outline six steps to convince students of the impor-
tance of effective software engineering approaches: make it real, make it fun, make it critical,
make it accessible, make it successful, and speak with a clear consistent voice in outlining strate-
gies for students. They suggest that it is the responsibility of the faculty to sell the students on the
value of software engineering by convincing them that it is not a boring subject. Callele et al.,
(2006) recommend a “stealth approach” of teaching underlying software engineering principles,
such as requirements engineering, early in the students education without labeling it as software
engineering. Razmov & Anderson (2006) present a more overt approach to creating a positive
atmosphere by incorporating innovative technology, such as tablet PC’s, in the classroom to mo-
tivate students. Claypool & Claypool (2005) propose putting the “fun” into the project by focus-
ing on game design.

Tools in Software Engineering Education
Regardless of the specific pedagogical approach taken, many software engineering educators
have noted the importance of teaching students the use of tools in software development, both to
familiarize students with current industry practices as well as to aid their own development effort.

 65

Teaching Undergraduate Software Engineering

Some offerings use existing development tools such as project planning software, various Inte-
grated Development Environments (IDE’s), and configuration management tools. Other institu-
tions have developed customized tools, such as the Personal Assistant for Software Engineers
(PASE) for project and metric tracking (Dick et al, 2000). Watkins (2009) describes the use of
Web 2.0 tools, such as Facebook and Google Docs, to promote team communication and collabo-
ration. In addition to using the existing tools to facilitate project development, their institution
developed a Web 2.0 peer evaluation system to assist in team assessment.

Student understanding of and practice with current software productivity tools are critical to a
complete education in software engineering. Students are better prepared to enter a software de-
velopment career, they gain an appreciation of the capabilities and limitations of such tools, and
they develop a more complete understanding of the software development process. In addition,
open source tools provide a cost-effective means to provide students with this experience, and
teaches students the value of the open source approach.

Our Course

Historical
At our institution, we offer a traditional computer science major following the ACM/IEEE rec-
ommended curriculum guidelines (ACM 2008). The major includes a two-semester software en-
gineering course taught to senior computer science students. The course is project-oriented and
considered a “capstone” experience; that is, it encompasses many aspects of their other courses
and attempts to provide a culminating educational experience. The course has been taught for
over 20 years and has gone through many variations.

The course has traditionally taught software engineering principles using standard texts, as well
as providing hands-on experience through a medium scale software development project. The
development methodology taught has evolved from the traditional waterfall model to a spiral ap-
proach to agile programming. Project team sizes have varied from small (3-5) to relatively large
(10+). Examples of previous projects include:

 Real-time visualization of satellite tracking and status

 Therapeutic joystick for enhancing motor skills of disadvantaged children

 Data aggregation for warfighter mission planning

 Immersive controls for a flight simulator

 Energy simulator to assist students in learning world energy dynamics

Currently, the course consists of 31 students, 25 Computer Science majors and 6 Systems Engi-
neering students. Students take the two-semester course their senior year. The 31 students were
broken into seven project teams of four or five. A single instructor teaches two offerings of the
class and serves as project mentor for all seven projects.

The projects attempted to cover the majority of the development process from requirement defini-
tion, through development and testing, with an introduction to maintenance. Projects have util-
ized “real world commercial” customers using local industry, “simulated” customers using fac-
ulty members, and academic projects for other departments. Each of these approaches offered
both benefits and challenges as noted by other educators. Throughout the various offerings, the
emphasis in the course has always been on the development process, not the end product.

To support the emphasis on process, prominence was given to the documents produced as part of
the development effort. Templates and examples were provided for requirements gathering and

66

Teel, Schweitzer, & Fulton

documentation, project planning, various design reviews, test planning, project presentations, and
meeting minutes. Oftentimes, hardcopy was used resulting in a mountain of paper for each pro-
ject. Provided templates were not customized to individual projects, creating a “one size fits all”
mentality.

While the format of the paperwork and the basic development methodology were standardized
across projects, the choice of programming languages, development environments, and develop-
ment tools was left to individual teams. This freedom was intended to allow for flexibility when
choosing an approach for a specific project type. The best choice for languages and tools could
vary depending on the details of the project. The use of tools themselves was left optional as long
as the documenting paperwork demonstrated the tasks and planning had occurred. Students were
exposed to project planning tools such as Microsoft Project, but their use was not mandated.

Motivation for Change
Our previous approaches to teaching the software engineering capstone sequence created various
challenges to both students and instructors. One problem was a result of the large amount of pa-
perwork generated. Since each team had to maintain a series of documents that evolved as the
project progressed, documentation became an unwelcomed part of the development effort. To
deal with it, several teams designated a “documentation expert” member of the team whose pri-
mary role was to keep the paperwork current and in the correct format. Having a single individ-
ual responsible reduced the team’s overall effectiveness as team members focused on their own
part of the development effort without embracing a more global view of the project. This limited
effective team collaboration. Another downside was, depending on the dedication and skills of
the designated individual, the paperwork could become onerous and result in poor documentation
quality. Finally, documentation was seen as a de-motivational and separate aspect of software
development and the student take-away was that it was a necessary evil versus an enhancing
process.

Another disadvantage of the previous approaches was the lack of a standardized suite of tools.
While this was intentional to allow for flexibility, it was difficult for the instructor to be the ex-
pert in all tool types and assist students when necessary. It also made equitable evaluation be-
tween projects hard as well as providing meaningful feedback. Ideally, tools should be current in
the field so students are exposed to up-to-date techniques, standardized for ease of grading and
providing feedback, and be seen by students as enhancing productivity, not hampering. Tools
should also enhance team collaboration and communication.

To address these issues and provide a more productive experience for students and instructors, a
different approach to teaching the software development sequence was started in fall 2011. The
remainder of this paper will describe the approach, present our experience to date, and discuss
future plans.

New Course Approach
While many tweaks have been made to the software engineering sequence over the years, signifi-
cant changes were made to the current offering to address the shortfalls described above. The
greatest change was the integration of a standardized set of open source software tools throughout
the development process to enhance communication and collaboration, reduce the onus of paper-
work, and expose students to current tools in industry. Similar to Watkins (2009), we chose a
suite of tools that support a Web 2.0 approach. The tools, their integration, and benefits are de-
scribed below. Other changes to the course included how projects were selected, how teams were
organized, and who acted the role of “customer”.

 67

Teaching Undergraduate Software Engineering

Tools
The tools we are using to support our software engineering course fall into four major categories:
Project Management Tools, Project Communication Tools, Programming Tools, and a Source
Code Control Tool. To provide tools that were easy to support and currently in use by corporate
software professionals, the instructor chose to require the usage of a standard suite of open-source
tools. This standardization on a single set of tools reflects the real-world of professional corpo-
rate software development that many students will be entering upon graduation. The following
sections detail each of the open source tools along with the perceived benefits by the students and
instructor.

Redmine
Redmine (www.redmine.org) provides both Project Management and Project Communication
capabilities for all student project teams. Redmine is open source and released under the terms of
the GNU General Public License v2 (GPL).

Some of the major Redmine features that both instructors and students found useful are:

 Multiple projects support - We use one Redmine project per student team plus one Ex-
ample Project provided by the instructor. Each project had the following built-in fea-
tures: Wiki, News, Document/Files, Forums, Issue tracking (requirements, bugs, tasks,
and enhancements) with associated scheduling, versioning, time-tracking, calendar, and
Gnatt charts. Each project’s Wiki is a central area for information sharing -- and is an es-
pecially valuable method for distributing instructor-provided examples. For example, at
the start of the course when student teams are creating their Project Management Plan
and the Requirements Specification, they “go to school” on the instructor-provided ex-
amples and templates in the Example Project.

 Flexible role based access control - Depending on the team size or students’ individual
expertise (e.g., for courses with students from multiple majors such as Computer Science,
Management, and/or Systems Engineering), appropriate team roles can be enabled. For
example, on a large team with dedicated student project managers, these managers can be
the only people with permissions to manage time-tracking, add new versions to the prod-
uct, and assign issues to specific product versions. For smaller teams, “power” teams, or
research teams, all members can have the same permissions. Additionally, the instructor
can be designated as the Manager for all student teams, giving him/her complete flexibil-
ity with monitoring projects, making early corrections, and providing feedback.

 Flexible issue tracking system - for small to medium size student teams, all students can
have the same permissions with respect to opening, progressing, and closing issues. For
larger student teams, where individual students or sub-teams have well-defined roles
(project manager, developer, quality assurance, etc.), each major role can have a work-
flow appropriate to their role. As an example, the development team can move an issue
from the New status into Development -- and from Development into Integration Test,
but the team cannot close issues. Closing an issue can only be done by the Integration
Test team after a successful test.

In addition to the benefits list above, instructors find that it is much easier to monitor the status of
each project team on a regular basis -- and can provide mentoring to more teams than previously.
With a single click, the instructor (as the “all-powerful” Manager on all projects), can see on a
single webpage how each project is doing -- the status of issues (requirements and tasks), who is

68

Teel, Schweitzer, & Fulton

assigned to each, and each issue’s priority, due date, and target version. On-the-spot help or ad-
vice can be given to the entire team -- or in the case where in the instruction would be useful to
the entire class, a course-wide Wiki entry can be made.

In the areas of intra-team communication, several benefits are derived. For example, instead of
project teams having to constantly de-conflict their schedules for a team meeting to discuss what
should be done, who is doing what, and why it should be done a specific way, Redmine Forums,
Wikis, and Issues provide an asynchronous communication path that all members are privy to and
that can be used wherever the student is and whenever needed. Additionally, Redmine’s History
feature provides a method to rapidly get caught up on the current project status and review the
path the project took to get to the current state. Project decisions can easily be captured and re-
visited when needed.

With respect to instructor/student communication, our experience is that the instructor can pro-
vide a consistent communication path via Redmine. Since the instructor provides most of the
system administration functions for the students’ cloud-based services, as student teams need
something enabled in the cloud, they can assign a new issue to the instructor and know the in-
structor will receive and act upon the issue. The instructor also has a single communication path
to update the entire student team on the issue’s status.

Some other benefits include:

 A central, web-accessible project information repository that provides an easy-to-update
and reference location for all students wherever they are, whenever they need. Also, the
responsibility for information currency and correctness is distributed to the entire team
rather than a single individual designated by the team to the unenviable job of project li-
brarian.

 Redmine helps students learn and appreciate good software engineering techniques since
a true software engineering workflow can be “electronically” enforced upon project is-
sues (scheduling and current status of product requirements, tasks, and bugs). These
electronic tools also take away much of the “grunt” work that is normally required when
trying to manually manage and track this type of information.

 For both the student teams and the instructor, Redmine eases the burden of regular stu-
dent turn-ins and instructor grading. For students, the “state” of Redmine and the Sub-
version repository can be used as a regularly scheduled turn-in. This approach also helps
enforce the need to keep project documents continually up-to-date -- rather than the
common approach of “wait until later” which can result in extremely out-of-date docu-
mentation.

 When a team consists of members that are not actually on-site, Redmine provides a
means for them to become an active, contributing member of the team. Sometimes our
projects have contributors or actual customers that do not reside at our institution. Such
participants have a much easier time keeping up-to-date on what the team is doing and
how well the project is progressing by monitoring the Redmine site.

 For project presentation purposes, students find they are able to use the team’s Redmine
and Subversion sites directly when giving briefings rather than rewriting the information
into presentation software.

 69

Teaching Undergraduate Software Engineering

Turnkey Appliances
To easily provide the Redmine stack, we standardize on an appliance from Turnkey Linux
(www.turnkeylinux.org). Turnkey provides 45+ ready-to-use stacks based on open source soft-
ware. Some example appliances are: a LAMP stack, Redmine, MySQL database, Moodle, Tom-
cat on Apache, and Bugzilla. Some of the important features of these appliances are: they are no-
cost, they are pre-configured and pre-tuned, they have a standard set of tools already installed to
support each appliance, and each appliance can be backed up to Amazon’s S3 Cloud Service for a
very small monthly cost ($0.15/GB per month). As an example of the backup cost, we currently
have four separate appliances (Redmine/Subversion appliance and three LAMP appliances) being
backed up to Amazon for a total cost of $0.50 per month. Another extremely important feature of
both the Turnkey Redmine appliance and Turnkey LAMP stack appliance is that, when neces-
sary, the instructor can “1-touch” deploy the entire appliance into the Amazon EC2 cloud service.
This provides the capability for student teams to scale up the system and/or bandwidth as they
need.

Eclipse IDE and Apache Subversion
Eclipse, from the Eclipse Foundation, is used as the “company-mandated” integrated develop-
ment environment. It is a multi-language software development environment widely used in the
open-source and corporate worlds. Eclipse has an extensible plug-in system that is used to pro-
vide support for a wide range of programming languages such as Java, Ada, C, C++, PHP, Py-
thon, etc., and also supports a wide range of SDKs such as Google’s Android SDK and the
Google Web Toolkit SDK. Additionally, there is also a good selection of language and library
tutorials that are based around the use of Eclipse as the IDE. For example, Google provides the
Android SDK Plug-in for Eclipse and all tutorials for the Android SDK have examples using
Eclipse.

Apache Subversion (http://subversion.apache.org/) is used to provide each project a version con-
trol system. Subversion is an open source project founded in 2000 by CollabNet, Inc., now a top-
level Apache project, and is widely used in both the open source and corporate world.

The integration between Eclipse and each team’s Subversion source code repository is provided
by the Subclipse Eclipse plug-in (http://subclipse.tigris.org/). Subclipse is released under the
Eclipse Public License (EPL) 1.0 open source license.

Some benefits we find when using the standardized development tool suite detailed above are:

 The instructor, already an expert in the use of the tools, is able to provide tutorials on us-
ing the suite and give one-on-one instruction when necessary.

 Apache Subversion is provided as part of the Redmine Appliance. Therefore, no addi-
tional system installation work is needed on the instructor’s part.

 This standardization on a set of tools reflects a “real world” environment that many of the
students will be entering upon graduation.

Development and Production Servers
Since all student projects are currently multi-tier applications requiring both an Internet accessible
web server and associated database, we standardized on a LAMP stack in the production envi-
ronment. To easily provide this stack and allow our teams to deploy their application into a
cloud-based production environment, we use the LAMP appliance from Turnkey Linux. Cur-
rently this appliance runs on a small server on our local network. As each team moved into a

70

Teel, Schweitzer, & Fulton

formal Beta Test program with their application, we moved their LAMP appliance into the Ama-
zon’s EC2 Cloud Service to give the application the system resources and bandwidth needed to
perform a real-world Beta Test in a production environment.

Our Experience
Our experiences so far with the chosen suite of tools are very positive. Many students recognize
the value of a Project Management tool since some have asked to use the tool in other courses.
Likewise, most students recognize the value of a centralized source code repository once they
have to share code with other teammates or they lose their code on their machine for some reason.
Some have even asked “Why didn’t we use Subversion earlier in our Computer Science course-
work”?

With respect to the communication capabilities provided by Redmine, both the instructor and the
students find that the use of Wikis enhance a constant flow of information between students and
between the instructor and students. According to students, especially valuable is the ability to
have easy access to examples and tutorials in a central location.

There were some areas requiring mid-course corrections. For example, before the course started,
we thought that using the standard set of Redmine Issues categories (“Bug”, “Feature”, and “Sup-
port”) would be sufficient. However, after a short period, we found that adding a “Task” cate-
gory with a slightly different workflow significantly helped the students plan their work early in
the project. Another area requiring correction was in the use of Forums (Redmine Boards). Our
initial thought was that this would be a valuable communication tool. However, we have found
that no students are using this capability and, instead, are communicating via Wiki and Issues.

In summary, the major benefits we find when using this standardized set of open-source tools are
similar to those benefits realized in the corporate world with some additional benefits gained in
the educational environment. First, a set of standard development tools and production environ-
ments result in consistency for all teams and thus, cost-effectiveness for the instructor in the areas
of training, system administration, and cross-project personnel migration. Second, the intra-
project communication paths are consistent, geographically agnostic, and always available.
Third, the ability of the instructor to be “always available” and provide more oversight and advice
to student teams is enhanced. Finally, standardization gives the students a taste of the profes-
sional work environment many will be entering upon graduation.

Future Plans
We will continue to enhance the experience in our course by refining how each of the tools is
used. In the second semester software engineering course for this group of students, we will con-
tinue to explore other Redmine functions we are not currently using. Additionally, we will solicit
feedback on which capabilities students found most valuable and which they did not take advan-
tage of. In future offerings of the course, we plan to introduce the tool suite even earlier in the
course so students can become comfortable with the tools capabilities and realize their value. We
have also worked with other computer science faculty to incorporate the tools into their courses
where appropriate. For example, in student Independent Study courses, the instructor is using
Redmine as a project management resource.

References
ACM, AIS, IEEE. (2005). Computing curricula 2005, The overview report. Retrieved March 14, 2012 from

http://www.acm.org/education/curric_vols/CC2005-March06Final.pdf

 71

http://www.acm.org/education/curric_vols/CC2005-March06Final.pdf

Teaching Undergraduate Software Engineering

ACM, IEEE. (2008). Computer science curriculum 2008, An interim revision of CS 2001. Retrieved March
14, 2012 from http://www.acm.org/education/curricula/ComputerScience2008.pdf

Alzamil, Z. (2005). Towards an effective software engineering course project. Proceedings of the 27the
International Conference on Software Engineering (ICSE '05), 631-632.

Boehm, B. (2006). A view of 20th and 21st century software engineering. Proceedings of the 28th interna-
tional conference on Software engineering (ICSE '06), 12-29.

Callele, D., & Makaroff, D. (2006). Teaching requirements engineering to an unsuspecting audience. ACM
SIGCSE Bulletin, 38(1), 433-437.

Claypool, K., & Claypool, M. (2005). Teaching software engineering through game design. Proceedings of
the 10th annual SIGCSE conference on Innovation and technology in computer science educa-
tion (ITiCSE '05), 123-127.

Clinton J. (1998). Tight spiral projects for communicating software engineering concepts. Proceedings of
the 3rd Australasian conference on Computer science education (ACSE '98), 136-144.

Coppit, C., & Haddox-Schatz, J. (2005). Large team projects in software engineering courses. ACM SIG-
CSE Bulletin, 37(1), 137-141.

Curran, W. S. (2003). Teaching software engineering in the computer science curriculum. ACM SIGCSE
Bulletin, 35(4), 72-75.

Deveaux, D., Fleurquin, R., & Frison, P. (1999). Software engineering teaching: A “Docware” approach.
Proceedings of the 4th annual SIGCSE/SIGCUE ITiCSE conference on Innovation and technology in
computer science education (ITiCSE '99), 163-166.

Dick, M., Postema, M., & Miller, J. (2000). Teaching tools for software engineering education. ACM SIG-
CSE Bulletin, 32(3), 49-52.

Dugan, R. F. (2004). Performance lies my professor told me: The case for teaching software performance
engineering to undergraduates. SIGSOFT Software Engineering Notes, 29(1), 37-48.

IEEE STD 610.12 (1990). IEEE standard glossary of software engineering terminology. IEEE Computer
Society.

LeJeune, N. F. (2006). Teaching software engineering practices with extreme programming. Journal of
Computing Sciences in Colleges, 21(3), 107-117.

Li, J. (2009). Teaching unified process in software design and development courses: a case study. Journal
of Computing in Small Colleges, 24(5) 5-11.

Liu, S., Takahashi, K., Hayashi, T. & Nakayama, T. (2009). Teaching formal methods in the context of
software engineering. ACM SIGCSE Bulletin, 41(2), 17-23.

Lu, B., & DeClue, T. (2011). Teaching agile methodology in a software engineering capstone course. Jour-
nal of Computing Sciences in Colleges, 26(5), 293-299.

Navarro, E., & van der Hoek, A. (2004). SimSE: An educational simulation game for teaching the Software
engineering process. ACM IGCSE Bulletin, 36(3), 233-233.

Nurkkala, T., & Brandle, S. (2011). Software studio: Teaching professional software engineering. In Pro-
ceedings of the 42nd ACM Technical Symposium on Computer Science Education (SIGCSE '11), 153-
158.

Pandey, R. (2009). Exploiting web resources for teaching/learning best software design tips. SIGSOFT
Software Engineering Notes, 34(6), 1-7.

Petkovic, D., Thompson, G., & Todtenhoefer, R. (2006). Teaching practical software engineering and
global software engineering: evaluation and comparison. ACM SIGCSE Bulletin, 38(3), 294-298.

Razmov, V., & Anderson, R. (2006). Pedagogical techniques supported by the use of student devices in
teaching software engineering. ACM SIGCSE Bulletin, 38(1) 344-348.

72

http://www.acm.org/education/curricula/ComputerScience2008.pdf

Teel, Schweitzer, & Fulton

 73

Rusu, A., Rusu, A., Docimo, R., Santiago, C., & Paglione, M. (2009). Academia-academia-industry col-
laborations on software engineering projects using local-remote teams. ACM SIGCSE Bulletin, 41(1),
301-305.

Shaw, K., & Dermoudy, J. (2005). Engendering an empathy for software engineering. In Proceedings of
the 7th Australasian conference on computing education - Volume 42 (ACE '05), 135-144.

Stiller, E., & LeBlanc, C. (2002). Effective software engineering pedagogy. Journal of Computing Sciences
in Colleges, 17(6), 124-134.

Stroulia, E., Bauer, K., Craig, M., Reid, K., & Wilson, G. (2011). Teaching distributed software engineer-
ing with ucosp: The undergraduate capstone open-source project. In Proceedings of the 2011 commu-
nity building workshop on Collaborative teaching of globally distributed software development
(CTGDSD '11), 20-25.

Watkins, K. (2009). Peer evaluation as a needed web 2.0 activity in project management for teaching prac-
tical software engineering. In Proceedings of the 10th ACM conference on SIG-information technology
education (SIGITE '09), 173-177.

Biographies
Dr Scott Teel is a long-time software development engineer and edu-
cator. He has served in many industry positions and was the Director
of Engineering at Sun Microsystems, Inc., before returning to teach at
the United States Air Force Academy (USAFA). He is currently an
Assistant Professor at USAFA teaching Software Engineering and
conducting research in Computer Science education and mobile tech-
nologies.

Dr Dino Schweitzer is the Director of the Academy Center for Cyber-
space Research at USAFA. He has over 20 years of experience teach-
ing and conducting research in Computer Science. His research inter-
ests include Computer Science education, visualization, and cyber se-
curity.

Dr Steven Fulton has served as a Computer Scientist for the Depart-
ment of Defense for over 20 years. He is currently a Visiting Professor
at USAFA and teaches several courses in the Computer Science de-
partment. His research interests include Computer Science education
and cyber security.

	Teaching Undergraduate Software Engineering Using Open Source Development Tools
	Scott Teel, Dino Schweitzer, and Steve FultonUnited States Air Force Academy, Colorado, USA
	scott.teel@usafa.edu, dino.schweitzer@usafa.edu, steven.fulton@usafa.edu

	Abstract
	Introduction
	Software Engineering Education
	Background
	Tools in Software Engineering Education

	Our Course
	Historical
	Motivation for Change

	New Course Approach
	Tools
	Redmine
	Turnkey Appliances
	Eclipse IDE and Apache Subversion
	Development and Production Servers

	Our Experience
	Future Plans
	References
	Biographies

