Issuesin Informing Science and Information Technology Volume 6, 2009

Evaluation of a Suite of Metrics for
Component Based Software Engineering (CBSE)

V. Lakshmi Narasimhan, P. T. Parthasarathy, and M. Das
Department of Computer Science, East Carolina University
Greenville, NC, USA

narasimhanl@ecu.edu

Abstract

Component-Based Software Engineering (CBSE) hasrsb@gnificant prospects in rapid pro-
duction of large software systems with enhancedtitguand emphasis otecomposition of the
engineered systems intonctional or logical components with well-definedterfaces used for
communication across the components. In this papsgries of metrics proposed by various re-
searchers have been analyzed, evaluated and bakelhusing several large-scale publicly
available software systems. A systematic analfdiseovalues for various metrics has been car-
ried out and several key inferences have been diiennthem. A number of useful conclusions
have been drawn from various metrics evaluatiohg;hwinclude inferences on complexity, reus-
ability, testability, modularity and stability dfie¢ underlying components. The inferences are ar-
gued to be beneficial for CBSE-based software dpwant, integration and maintenance.

Keywords: CBSE metrics, software integration, software ailty, software maintenance.

Introduction

Component-Based Software Engineering (CBSE) is thadelogy that emphasizes the design
and construction of computer—based systems usisabte software components. This principle
embodies an element of “buy, don't build” that &hthe emphasis from programming software
to composing software systems (Pressman, 200&)ako an approach for developing software
that relies on software reuse and it emerged fhaidilure of object-oriented development to
support effective reuse. The behavior and the lgyadii an application cannot be assessed unless
it is tested comprehensively. The quality of theliaption is high when it yields the expected
results, is stable and adaptable and leads to eadaaitenance costs. If a change has been
introduced in a component, which has been intedriatan application, the impact of the change
on the whole application has to be determined byd#veloper to assess the stability of the
application. Consequently, there is certainly adreemeasure quality and assess the
component’s impact on the overall system. Metriesneeded to measure several types of quality
issues. Metrics are also needed to study
Material published as part of this publicationheiton-line or the characteristics of a given software

in print, is copyrighted by the Informing Scien cstitute. system under different scenarios (Ali &
Permission to make digital or paper copy of paralbof these ~ Ghafoor 2001 Bertoa, Troya, &
works for personal or classroom use is grantedowuitliee Vallecillo 2003 Lorenz & Kidd 1992).

provided that the copies are not made or distribémep rofit . . .
or commercial advantage AND that copies 1) bear btice Most of the existing metrics are appllca
in full and 2) give the full citation on the firpge. It is per- ble to small programs or components
missible to abstract these works so long as ciedjven. To (Kan 2002), while the objective of

copy in all other cases or to republish or to posa server or CBSE metrics is to evaluate the behav-
to redistribute to lists requires specific pernossand pay ment ior and reliability of the component

of a fee. ContadRublisher@InformingScience.ortp request . .
redistribution permission. when integrated into a large software

Metrics for Component Based Software Engineering

system. Consequently (Weyuker, 1998), the lackppf@priate mathematical properties fails
quality metrics. Metrics that have a sound thecaébasis become applicable to real life organi-
zations (Pfleeger & Fenton, 1998). Some of the in®tely on parameters that could never be
measured or are too difficult to measure in practiince a component’s internal structure may
not be available, there is a need for black botigeand a number of existing metrics may not be
applicable directly.

A software component is a coherent package of softwnplementation that offers well-defined
and published interfaces, is reusable and thabeamdependently developed and delivered; such
components are put together to form an applicatmwever, there are no good metrics available
to validate their effectiveness, when componergsraegrated together to form a complete sys-
tem. Due to the inherent differences in the dewvedomt of component based and non-component
based systems, the traditional software metriceepro be inappropriate for component-based
systems. The component metrics alone are not ieuifitor an integrated environment, because
there is a need to measure the stability and abiéifytaf each component when tt is integrated
with other components.

Narasimhan and Hendradjaya (2007) noticed thed&ahetrics that aids in reducing the mainte-
nance costs and defined metrics whose values #geted during the execution phase. Such met-
rics are useful for assessing the maintenanceof@sdividual components and that of the appli-
cation in which the component is integrated. Thipgr supports and critiques the ideas of Nara-
simhan and Hendradjaya in providing metrics foritibegration of software components. A
component when executed may Yyield the expectediselsut its behavior and functionality,

when integrated with other components to make getenapplication, may yield unexpected
results. Therefore, there is a need for metricssess the functionality of each component when
integrated with other components and functionalfitthe application on the whole. The paper
provides a comparison of various metrics and oleseseveral views on the traditional metrics
and the metrics proposed by Narasimhan and Heageadjre useful in assessing the quality of
components in an integrated application. Benchmsoksvare programs have been used as in-
puts to instrumentation programs and metric valha& been collected. A systematic analysis of
the values for various metrics (Chidamber & Kemet884; Cho, Kim, & Kim, 2001) has been
carried out and several key inferences have beamrdirom them. Inferences from this work
certainly provide relative comparisons on compyexitusability, testability, modularity and sta-
bility of the underlying components. Finally, weoshthat the inferences drawn from this work
are beneficial for CBSE-based software developmeeigration and maintenance.

The rest of the paper is organized as followsntie section provides related works on
integration of software components, while the teiedtion provides a comparison of suites of
metrics proposed by three different researchems.félwrth section details the design of the metric
evaluation system and the fifth section describesristrumentation programs used to evaluate a
CBSE software systems. The sixth section desctif@sature of the benchmark suites selection,
and inferences from the various suites of metniegyaed. The final section concludes the paper
and offers some pointers for further researchisarea.

Metrics on the Integration of Software Components

Narasimhan and Hendradjaya (2007) classified thetrics into complexity, criticality, triangu-

lar and dynamic metrics. Since this paper is in-parevaluation of their metrics and comparison
with other metrics, the reader is encouraged td tea original papers that define the various me-
trics (see Chidamber & Kemerer, 1994; Cho, Kim, &K2001; Narasimhan & Hendradjaya,
2007).

732

Narasimhan, Parthasarathy, & Das

Comparison of the Three Metric Suites

A comparison of metrics provides a basis for chokselection of a particular type of metric and
this has been made on such issues as, reusatoliyplexity, size, testing time and maintenance.
The metric values are compared using benchmankagtprograms. While many authors have
provided a comparison of metrics, their focus heenton collecting the metric values for a com-
ponent considered as a stand-alone entity (Bettak, 003; Henderson-Sellers, 1996; Lorenz &
Kidd, 1992). In this paper, we collected metricuesl for sub-components that make a system and
evaluated the best suite of metrics that suit @gaontext/system. Three sets of metrics that are
currently in use are tabulated in Table 1. The ehaf a metric is theoretically analyzed based
on their definitions provided by the corresponduughors. A metric is considered as suitable for

a given quality factor, if its value is significaiotthe particular factor (Boehm et al., 2000).

Table 1: Comparison of various metrics

Metrics Author (s) Strengths & Limitations

WMC, RFC, LCOM, CBO, DIT, NOC Chidamber & Kemerer,Broad indicator, but lack

1994 specificity

CPC, CSC, CDC, CCC Cho, Kim & Kim, 200L Narrow icatior

Covers a broad set of is-
sues

Narasimhan & Hen-
dradjaya, 2007

CPD, CID, CIID, COID, CAID, CRITjjx, CRIT
bridge CRIT inheritance CRlTsize CR”—ally Triangu'
lar metrics, ANAC, ACD, AACD.

Metrics behavior under the criteria reusability

The metrics mentioned in Table 2 measure reusabilia component. A high LCOM, NOC, and
DIT implies that the corresponding components dgkeiyreusable. A high CID, CPD, WMC,
CSC, and CBO, implies that the corresponding coepisnare less reusable. A low CREL
CRIT .« implies that the corresponding components areyhiglusable. It is noted that a com-
ponent is considered good, if it is highly reusgBleowne, Werth, & Lee, 1990; Washizaki, Ya-
mamoto, & Fukazawa, 2003).

Table 2: Relative values for metricsided for
Resusability Quadlity factor

Table 3: Relative values for metricsided for the
quality factor - Complexity

Name of Relative value Implication Name of Relative value | Implication for
metric of metric for metric of metric Complexity
Reusability RFC increases Increases
LCOM increases Increases CBO increases Increases
wWMC increases Decreases LCOM decreases Increases
CBO increases Decreases DIT increases Increases
NOC increases Increases CPC increases Increases
DIT increases Increases CPD increases Increases
csCc increases Decreases CID increases Increases
CPD increases Decreases CAID increases Increases
CID increases Decreases ClID increases Increases
CAID increases Decreases COID increases Increases
CRIT gjze decreases Increases
CRIT Link decreases Increases

Metrics behavior under the criteria complexity

The metrics mentioned in Table 3 measure the cotitylef a component. A high value for the
metrics RFC, CBO, DIT, CPD, CIID, COID, and CPCpisnthat the corresponding component

733

Metrics for Component Based Software Engineering

is considered to be highly complex. A low value tfeeg metric LCOM implies that the corre-
sponding component is considered highly compleig. iibted that a component is considered
ideal if it is less complex and hence the valuethefmetrics like RFC, CPC, CIID and COID are
to be very low.

Metrics behavior under the criteria testability

The metrics provided in Table 4 measure the tdityadii a component. A high value for the met-
rics NOC, CID, CRITgrage, CRIT ik @and RCC imply high testability. An ideal applicatimade
up of components should take a short time-to-test.

Table 4: Relative values for metricsided for the Table 5: Relative values for metricsided for the qud-
quality factor - Testability ity factor -Modul arity
Name of Relative value | Implication for Tes- Name of met- | Relative value Implication for
metric of metric tability ric of metric Modularity
NOC Increases Increases WMC increases Increases
RCC Increases Increases CPC increases Increases
CID Increases Increases CRIT pheritance | iNCreases Increases
CRIT gyigge | InCreases Increases CRITgize increases Decreases
CRIT Link Increases Increases AC increases Increases
NOC increases Decreases

Metrics behavior under the criteria maintenance

The list of metrics, whose values can be useddo the maintenance effort required for a given
application, is: ANAC, CCC, NC and ACD. The metnedues for these metrics are collected
during run-time which implies that the developmeimase of the components has been completed
and that, these metrics are being collected fontela@ance purposes. Narasimhan and Hendrad-
jaya (2007) have proposed a series of dynamic esdior the purpose of maintenance.

Metrics behavior under the criteria modularity

The metrics mentioned in Table 5 measure sevepat#son the size of a component. A high
value for the metrics WMC, and CPC, implies a laecgmponent. If CRITE;,is high, it means
the component has letter degree of modularity.gh fialue for the metrics CRIdheritanceand
NOC, imply that the corresponding component is camed to less reusable. It is noted that a
component is considered good, if it is has an gp@ate size so as to make it less complex and
highly reusable.

Software Architecture of Metric Evaluation System

The software architecture of metric evaluationesysis provided in Figure 2. The system has
the following six major components:

» Benchmark suite that contains programs, whose efmbject codes are used for metric
generation

* Instrumentation program suite that facilitatesexlibn metric values from the bench-
mark programs

e Compiler that takes the benchmark suite as inpuhfo instrumentation program, com-
piles and executes

734

Narasimhan, Parthasarathy, & Das

* Metric values generator, which is the output ofitfsérumentation program, that gives
the metric values for the benchmark software

* Inferences engine is the place at which infereacesnade from the various metric val-
ues

* Metrics visualization environment

Various benchmark software selected on the basisrog criteria is given as inputs to the in-
strumentation program which, when compiled and etextby the compiler, gives the metric
values as outputs. Inferences are made based ontihes and the theoretical analysis and the
best matched metrics suite for a given contexbigltided.

I

— 1)jDepend
Instrumen tation 2)Metrics 1.3.6
program suite

— 0
Metric values R Inferences
generator Engine

a

nnnnnnnnnn

Figure 2: Softwar e ar chitecture of metric evaluati on system

Instrumentation Programs

Instrumentation programs concern a set of prog@migols used for collecting metrics from var-
ious benchmark software systems. The instrument@tiograms provide output in the form of
data units, which might be a direct or indirectrespntation of some of the metrics of the three
suites considered. If the data units are in imdiferm, the required calculations/transformations
are performed by the authors.

jDepend (jDepend, 2007) and Metrics 1.3.6 (Metti%6 2007) are the instrumentation pro-
grams used to facilitate data collection. JDeperfivare is used to collect data for the following
metrics: CRIT Inheritance, CRIT Size, COID, CAIDWECIID. In the developer’s own words,
“JDepend traverses Java classfile directories ambgates design quality metrics for each Java
packagé JDepend allows automatic measurement of thetgedla design in terms of its exten-
sibility, reusability, and maintainability to mar@gackage dependencies effectively. The output
of the software is the following units.

Metrics 1.3.6 software is used to collect valuedtie following metrics directly or indirectly:
NOC, WMC, DIT, CPD and LCOM. Metrics 1.3.6 providegtrics calculation and dependency
analyzer plug-in for the Eclipse platform. It me@suvarious metrics with average and standard
deviation, detects cycles in package and type dipeies and provides a graphical visualization.
This package is operating system independent dese for the Java programming language.

735

Metrics for Component Based Software Engineering

The following procedure has been adopted to calietic values from the output of the instru-
mentation programs:

a) The outputs of the JDepend software provides vdhrethe metrics: COID, CIID, CRIferi-
ance CRITsize OVer a (Java collection) data structure.

b) Values for the metric CAID, CID and COID are caddald manually based on the definition
of the CAID. The indirect values for CIID and COliave been obtained from the software
outputs.

c) From the output of Metrics 1.3.6, values for therioe NOC, DIT, LCOM and WMC have
been collected directly.

d) CPD is calculated by considering the mean valubelRNumber of Classef®r each bench-
mark program.

Benchmarking the Metrics

This section provides an overview of the softwaaekpges which are used as source inputs for
collecting values of the various metrics. A gooddienark has been empirically defined (based
on observations of several software systems) afwaage containing at least 50 classes, and
15,000 lines of code and further, the code has lietavailable over any object-oriented lan-
guage. In this paper, the emphasis is on preggttwnproperties of CBSE in an integrated envi-
ronment such that the application yields the exqeergsults. Therefore, if the value of a metric
determines the component for which the metric valag been calculated as stable, reusable,
more abstract and less complex, then that benchmadunsidered stable. Otherwise, some of the
components in the benchmark may need to be rerdgsigeveral benchmark packages of dif-
ferent sizes and varying modules have also beesidswed in this work. The following criteria
have been used in the selection benchmark software:

() Code should be object—oriente@he package code is to be written in any obje@nterd
language.

(i The size of packagd@he size of the package should be large enougbgictoa practical
scenario, i.e., the packages with at least 20j0@8 bf code are considered. The number of
classes should be at least 50.

(i) Transparency of source codackages for which the source code is not transpare se-
lected for black-box testing and reuse. By thenitedns of CBSE, the complete source code
of a component may not be available for any deloyhile reusing the component. There-
fore, to depict the real-life scenario, packageh whbject codes have only been considered.

Inferences from the Results

Table 6 provides a snapshot of the characteristitise chosen benchmark software programs.
Table 7 provides the values of various metricdtiersix tape6: Characteristics of benchmark

benchmark programs chosen. Inferences are listed be software programs
based on the theoretical definitions and the me#iges

llected. The best suite of metrics that matcheson- Benchmark | INo.of)~ No. of sub-
collected. . y programs | clases [components
text of measuring the integrated components _hans als IDap 339 16
been provided. Among the three suite of metricsl dise JCIFS 141 8
comparison purpose, we chose the best ones matchin jGrasp 1265 18
the context of measuring the integrated comporniants JUnit 107 8

order to measure various values.

736

Narasimhan, Parthasarathy, & Das

Table 7: Table of metric val ues

Metrics Junit Element | mouseGestures ldap | JCIFS | jGrasp
CPD 13.375 19 4.5 6.2% 0.p 70|7
CID 61 6 11 114 70 204
CIID(Ce) 315 6 10 89 51 159
COID(Ca) 91 1 1 25 19 44
CAID(CID/8) 7.625 6 5.5 7.12§ 8.7p 11.34
CRIT Inheri-

tance 93 19 8 91 4 1142
CRIT size 0 0 0 0 0 1
AC(=CID) 61 6 11 114 74 204
NOC 16 4 0 22 18 1
LCOM 0.91 0.855 0.778 0.62) 0.7%3 0
DIT 6 4 6 8 7 1
wMmC 822 407 46 763 539 3

Inferences from the CIID metrié high value for the CIID metric implies that them-
plexity is high.IDap, JCIFS , mouseGesturasdElemenipackages have comparably
low values.

Inferences from the COID metri& high value for the COID metric implies that the
complexity of the component is relatively higiouse Gestures, IDap, JCIESd Grasp
have low COID values, which implies that their cdemy is less.

Inferences from the CAID metri& high value for the CAID metric implies that the-
usability property of the component decreases.cbnaplexity of the component is con-
sidered high thus increasing the effort of testgbiCAID metric value is relatively small
for all the benchmarks considered.

Inferences from the CRheitanceMetric A high value for the CRIFheritance Metric im-
plies a highly modular component; high modularigkes a component more reusable.
IDap, jUnitandjGraspare considered to be highly modular.

Inferences from the CRIJ.metric If this value is high, it means it is less modwdad
hence less reusable. For the benchmarks, the melnies are within the threshold value
except fojGrasp

Inferences from the AC metri& high value for the AC metric implies that thengpo-
nent is highly modulaiDap andjGrasp are considered highly modular.

Inferences from the NOC metri& high value for the NOC metric implies that dem-
ponent is highly reusable, but testability effertelatively highlDap, JCIFS,andjUnit
are relatively highly reusable.

Inferences from the CPD MetriErom the theoretical analysis, if a high valuetfe
CPD metric implies that the reusability decreaé@esong the considered benchmarks,
IDap, JCIFSandmouseGesturdsave low CPD values and hence highly reusable.

Inferences from the CID metrié high value for the CID metric implies that treaus-
ability decreases. Further, the time taken fomgstnd component complexity is high.
MouseGestureandElementpackages have low CID values, thereby having regis-
abilty and less complexity.

737

Metrics for Component Based Software Engineering

* Inferences from the LCOM metri& high value for the LCOM metric implies that the
reusability of that component is high and the camepb is relatively less complepunit,
Elementand JCIFS have very high values. It is inferred #iighe packages are rela-
tively reusable excepGrasp.

» Inferences from the DIT metritf the value of DIT is high, reusability is higind com-
plexity is high (Chidambar & Kemerer, 199/ap, JCIFS, mouseGesturaadjUnit are
highly reusable and highly complex. This metricueafnd the inferences indicate that
these kinds of metrics are not efficient at meaguhe CBSE qualities, as they consider
the value of the entire application as a single proment.

* Inferences from the WMC metritf the value of WMC is high, reusability is casred
low. The package®ap, JCIFS, jUnitare less reusable. This metric value and the-infe
ences indicate that these kinds of metrics are not
efficient at measuring the CBSE qualities, as the

: _ e Table 8: Values of CRIT ngapility fOr
consider the value of the entire application as a

different benchmark software

single component. programs
Benchmark Value for
* Inferences on CRILaiiy Metric: The values for the metric
CRIT instabiity for the benchmarks, calculated usin IDap 2
the formula as defined by Martin (1995), is giver Jﬁ;ﬁ;p g
in Table 8. ICIES >
From the values quoted in Table 7, it is inferreat the gg;‘::ﬁeswres 00

some of the components of jGrasp and JUnit neéd to
redesigned.

Discussion and Conclusions

This paper provides a systematic comparison oetkrgtes of metrics. The comparisons (Table 7
& 8) allow a user to choose the best applicablegimbased on their particular requirements. The
metric values provided are helpful to study theawdr of metrics under various quality factors.
The metrics defined by Chidamber and Kemerer (168d¥idered in this paper (WMC, NOC,
DIT and LCOM) do not measure quality of integratethponents. The metrics may be applica-
ble to analyze reusability, complexity and sizer@xctly, but they are not sufficient to measure
testing time and maintenance. The metrics defiye@ho et al. (2001) are CPC, CSC, CDC, and
CCC and these metrics prove deficient for black-testing. These metrics deal with the com-
plexity of the code, which requires the availapibf the entire source code. Since Cho metrics
calculate the complexity of metrics by using thenbamation of the number of classes, and inter-
faces, the calculation of cyclomatic complexitylwhe sum of classes and interfaces needs in-
formation from the source code, which is a shoriogmThis proves successful only if the devel-
oper has access to the source code. Narasimhatieanailadjaya (2007) metrics test to check if
any incorrect operations are not inherited by tilicemponents. Dynamic metrics measure main-
tenance and testing issues as a consequence ofiexed the code. The metrics measure several
aspects, such as reusability, complexity, testimg-tsize and maintenance. The formulas pro-
vided for each metric considers the average oftbeomponents rather than a single component,
thus extending them to an integrated environmesat dlhe suite of metrics proposed by Nara-
simhan and Hendradjaya prove to be efficient atsond@rag the quality of integrated components.
However, there are some limitations that resthietuse of this suite of metrics, which are dis-
cussed below: The lack of threshold values resttitd suite of metrics theoretically hindering its
use practically. Narasimhan and Hendradjya hawiively defined the values using representa-
tive software, but an accurate threshold valueutstied by quantifying and testing more empiri-
cal dataset is necessary. Criticality of the metneans the limitations that stop the use of met-

738

Narasimhan, Parthasarathy, & Das

rics for practical purposes and requires immediatations. Future research can be carried out in
the following directions: 1) Collecting metric vaki for further benchmarks to study metric be-
havior, 2) Revising the formulas used for calcalatf metrics for greater accuracy and 3) Set-
ting appropriate Threshold values.

References

Ali, S. S., & Ghafoor, A. (2001). Metrics-guided @ity manage ment for component-based software sys-
tems.Proceedings of the 25th Annual International Co mp&teftware and Applications Conference
pp.303-308.

Bertoa, M. F., Troya, J. M., & Vallecillo, A. (20D.3A survey on the quality information provided bgft-
ware component vendomBroceedings of the"VECOOP Workshop on Quantitative Approaches in
Object — Oriented Software Engineeringp.25- 30.

Browne, J. C., Werth, J., & Lee, T. (1990). Experirtal evaluation of a reusability-oriented pargiied-
gramming environmentEEE Transactions on Software Engineering26111-120.

Boehm, B.W. et al. (2000%oftware cost estimation with COCOMOHMrentice Hall Edition.

Chidamber, S. R., & Kemerer, C. F. (1994). A metisaite for object-oriented desigBREE Transaction
on Software Engineering, 28), 476-493.

Cho, E. S., Kim, M. S., & Kim, S. D. (2001). Co mpot metrics to measure component qualitye 8th
Asia-Pacific Software Engineering Conference (APSR@. 419- 426.

Henderson-Sellers, B. (199&)bject-oriented metrics: Measures of complexiientice Hall.

JDepend. (n.d.). Available 10 Septe mber, 20Qntgut//clarkware.co n/software/JDepend.html

Kan, S. H. (2002)Metrics and models in software quality engineerifddison-Wesley Professional.

Lorenz, M., & Kidd, J. (1992)Object—oriented software metrics: A practical guiBagle wood Cliffs,
N.J: Prentice-Hall.

Martin, R. (1995)Designing object-oriented C++ applications usinggtBooch methadEnglewood
Cliffs, NJ: Prentice Hall.

Metrics 1.3.6. (n.d.). Available 10 September, 2a6fttp://metrics.sourceforge.net/

Narasimhan, V. L., & Hendradjaya, B. (2007). Scaheoretical considerations for a suite of metrams f
the integration of software componentgformation Sciences: An International Joumal, {3)7 844-
864.

Pfleeger, L. S., & Fenton, N. E. (1998pftware metrics: A rigorous and practical approaBnooks/Cole
Publications.

Pressman, R. S. (200H5oftware engineering: A practitioner's approadhcGraw Hill.

Washizaki, H., Yamamoto, H., & Fukazawa, Y. (2008)netrics suite for measuring reusability of soft-
ware component$roceedings of the Internationgdp. 211- 223,.

Weyuker, E. J. (1998). Testing component—basedvaodt A cautionary taldEEE software, 1(6), 54 —
59.

739

Metrics for Component Based Software Engineering

Biographies
Narasimhan is a Professor of Software Engineering in the Diepant
of Computer Science at East Carolina UniversityAUSe has pub-
lished over 180 papers in the areas of SoftwarénEBagng and Infor-
mation Engineering. In particular, his researtér@sts are in com-
puter architecture, parallel and distributed conmgytsoftware testing,
text & audio processing and mining, E-Commercetvafe process,
asset management systems and Standards, and inbormanage-
ment & fusion. His papers have appeared in suda journals and
international conferences. Prof. Narasimhan igids Member of the
IEEE and ACM, Fellow of ACS, IEAust and IEE (UK)eHs a Tech-
nical Member (representing USA) of the Expert Pah¢SO (International Standards Organiza-
tion) and ANSI.

Miss. Prapanna Parthasarathy obtained her BS in Computer Science from Sri Véardaara
University, India, and MS in Computer Science fidfastern Kentucky University, USA. Par-
thasarathy is currently working for Lexmark Pristénc. at Louisville, KY, USA. Her research
interests are in the areas of component basedaefewgineering, software metrics and testing.

M anik Lal Das received his Ph.D. degree from Indian Institute of
Technology, Bombay in 2006. Currently he is an #tasit Professor at
Dhirubhai Ambani Institute of Information and Comnization Tech-
nology, Gandhinagar, India. He has over 11 yeaR&d) and teach-
ing experience in Computer Science. He has publisker 40 re-
search articles in refereed Journals/Conferenoess B member of the
IEEE, Cryptology Research Society of India anddndsociety for
Technical Education. His research interests inctidgtology and
Information Security.

740

