
Issues in Informing Science and Information Technology Volume 6, 2009

Evaluation of a Suite of Metrics for
Component Based Software Engineering (CBSE)

V. Lakshmi Narasimhan, P. T. Parthasarathy, and M. Das
Department of Computer Science, East Carolina University

Greenville, NC, USA

narasimhanl@ecu.edu

Abstract
Component-Based Software Engineering (CBSE) has shown significant prospects in rapid pro-
duction of large software systems with enhanced quality, and emphasis on decomposition of the
engineered systems into functional or logical components with well-defined interfaces used for
communication across the components. In this paper, a series of metrics proposed by various re-
searchers have been analyzed, evaluated and benchmarked using several large-scale publicly
available software systems. A systematic analysis of the values for various metrics has been car-
ried out and several key inferences have been drawn from them. A number of useful conclusions
have been drawn from various metrics evaluations, which include inferences on complexity, reus-
ability, testability, modularity and stability of the underlying components. The inferences are ar-
gued to be beneficial for CBSE-based software development, integration and maintenance.

Keywords: CBSE metrics, software integration, software reusability, software maintenance.

Introduction
Component-Based Software Engineering (CBSE) is a methodology that emphasizes the design
and construction of computer–based systems using reusable software components. This principle
embodies an element of “buy, don’t build” that shifts the emphasis from programming software
to composing software systems (Pressman, 2001). It is also an approach for developing software
that relies on software reuse and it emerged from the failure of object-oriented development to
support effective reuse. The behavior and the stability of an application cannot be assessed unless
it is tested comprehensively. The quality of the application is high when it yields the expected
results, is stable and adaptable and leads to reduce maintenance costs. If a change has been
introduced in a component, which has been integrated in an application, the impact of the change
on the whole application has to be determined by the developer to assess the stability of the
application. Consequently, there is certainly a need to measure quality and assess the
component’s impact on the overall system. Metrics are needed to measure several types of quality

issues. Metrics are also needed to study
the characteristics of a given software
system under different scenarios (Ali &
Ghafoor 2001 Bertoa, Troya, &
Vallecillo 2003 Lorenz & Kidd 1992).
Most of the existing metrics are applica-
ble to small programs or components
(Kan 2002), while the objective of
CBSE metrics is to evaluate the behav-
ior and reliability of the component
when integrated into a large software

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

Metrics for Component Based Software Engineering

732

system. Consequently (Weyuker, 1998), the lack of appropriate mathematical properties fails
quality metrics. Metrics that have a sound theoretical basis become applicable to real life organi-
zations (Pfleeger & Fenton, 1998). Some of the metrics rely on parameters that could never be
measured or are too difficult to measure in practice. Since a component’s internal structure may
not be available, there is a need for black box testing and a number of existing metrics may not be
applicable directly.

A software component is a coherent package of software implementation that offers well-defined
and published interfaces, is reusable and that can be independently developed and delivered; such
components are put together to form an application. However, there are no good metrics available
to validate their effectiveness, when components are integrated together to form a complete sys-
tem. Due to the inherent differences in the development of component based and non-component
based systems, the traditional software metrics prove to be inappropriate for component-based
systems. The component metrics alone are not sufficient for an integrated environment, because
there is a need to measure the stability and adaptability of each component when it is integrated
with other components.

Narasimhan and Hendradjaya (2007) noticed the lack of metrics that aids in reducing the mainte-
nance costs and defined metrics whose values are collected during the execution phase. Such met-
rics are useful for assessing the maintenance cost of individual components and that of the appli-
cation in which the component is integrated. This paper supports and critiques the ideas of Nara-
simhan and Hendradjaya in providing metrics for the integration of software components. A
component when executed may yield the expected results, but its behavior and functionality,
when integrated with other components to make a complete application, may yield unexpected
results. Therefore, there is a need for metrics to assess the functionality of each component when
integrated with other components and functionality of the application on the whole. The paper
provides a comparison of various metrics and observes several views on the traditional metrics
and the metrics proposed by Narasimhan and Hendradjaya are useful in assessing the quality of
components in an integrated application. Benchmarks software programs have been used as in-
puts to instrumentation programs and metric values have been collected. A systematic analysis of
the values for various metrics (Chidamber & Kemerer, 1994; Cho, Kim, & Kim, 2001) has been
carried out and several key inferences have been drawn from them. Inferences from this work
certainly provide relative comparisons on complexity, reusability, testability, modularity and sta-
bility of the underlying components. Finally, we show that the inferences drawn from this work
are beneficial for CBSE-based software development, integration and maintenance.

The rest of the paper is organized as follows: the next section provides related works on
integration of software components, while the third section provides a comparison of suites of
metrics proposed by three different researchers. The fourth section details the design of the metric
evaluation system and the fifth section describes the instrumentation programs used to evaluate a
CBSE software systems. The sixth section describes the nature of the benchmark suites selection,
and inferences from the various suites of metrics analyzed. The final section concludes the paper
and offers some pointers for further research in this area.

Metrics on the Integration of Software Components
Narasimhan and Hendradjaya (2007) classified their metrics into complexity, criticality, triangu-
lar and dynamic metrics. Since this paper is in-part an evaluation of their metrics and comparison
with other metrics, the reader is encouraged to read the original papers that define the various me-
trics (see Chidamber & Kemerer, 1994; Cho, Kim, & Kim, 2001; Narasimhan & Hendradjaya,
2007).

Narasimhan, Parthasarathy, & Das

733

Comparison of the Three Metric Suites
A comparison of metrics provides a basis for choice of selection of a particular type of metric and
this has been made on such issues as, reusability, complexity, size, testing time and maintenance.
The metric values are compared using benchmark software programs. While many authors have
provided a comparison of metrics, their focus has been on collecting the metric values for a com-
ponent considered as a stand-alone entity (Bertoa et al., 2003; Henderson-Sellers, 1996; Lorenz &
Kidd, 1992). In this paper, we collected metric values for sub-components that make a system and
evaluated the best suite of metrics that suit a given context/system. Three sets of metrics that are
currently in use are tabulated in Table 1. The behavior of a metric is theoretically analyzed based
on their definitions provided by the corresponding authors. A metric is considered as suitable for
a given quality factor, if its value is significant to the particular factor (Boehm et al., 2000).

Table 1: Comparison of various metrics

Metrics Author(s) Strengths & Limitations

WMC, RFC, LCOM, CBO, DIT, NOC Chidamber & Kemerer,
1994

Broad indicator, but lack
specificity

CPC, CSC, CDC, CCC Cho, Kim & Kim, 2001 Narrow indicator

CPD, CID, CIID, COID, CAID, CRIT link, CRIT
bridge, CRIT inheritance, CRIT size, CRIT all, Triangu-
lar metrics, ANAC, ACD, AACD.

Narasimhan & Hen-
dradjaya, 2007

Covers a broad set of is-
sues

Metrics behavior under the criteria reusability
The metrics mentioned in Table 2 measure reusability of a component. A high LCOM, NOC, and
DIT implies that the corresponding components are highly reusable. A high CID, CPD, WMC,
CSC, and CBO, implies that the corresponding components are less reusable. A low CRIT Size,
CRIT Link implies that the corresponding components are highly reusable. It is noted that a com-
ponent is considered good, if it is highly reusable (Browne, Werth, & Lee, 1990; Washizaki, Ya-
mamoto, & Fukazawa, 2003).

Metrics behavior under the criteria complexity
The metrics mentioned in Table 3 measure the complexity of a component. A high value for the
metrics RFC, CBO, DIT, CPD, CIID, COID, and CPC, imply that the corresponding component

Table 2: Relative values for metrics ideal for
Resusability Quality factor

Name of
metric

Relative value
of metric

Implication
for

Reusability
LCOM increases Increases
WMC increases Decreases
CBO increases Decreases
NOC increases Increases
DIT increases Increases
CSC increases Decreases
CPD increases Decreases
CID increases Decreases
CAID increases Decreases
CRIT Size decreases Increases
CRIT Link decreases Increases

Table 3: Relative values for metrics ideal for the
quality factor - Complexity

Name of
metric

Relative value
of metric

Implication for
Complexity

RFC increases Increases
CBO increases Increases
LCOM decreases Increases
DIT increases Increases
CPC increases Increases
CPD increases Increases
CID increases Increases
CAID increases Increases
CIID increases Increases
COID increases Increases

Metrics for Component Based Software Engineering

734

is considered to be highly complex. A low value for the metric LCOM implies that the corre-
sponding component is considered highly complex. It is noted that a component is considered
ideal if it is less complex and hence the values of the metrics like RFC, CPC, CIID and COID are
to be very low.

Metrics behavior under the criteria testability
The metrics provided in Table 4 measure the testability of a component. A high value for the met-
rics NOC, CID, CRIT Bridge, CRIT Link and RCC imply high testability. An ideal application made
up of components should take a short time-to-test.

Metrics behavior under the criteria maintenance
The list of metrics, whose values can be used to infer the maintenance effort required for a given
application, is: ANAC, CCC, NC and ACD. The metrics values for these metrics are collected
during run-time which implies that the development phase of the components has been completed
and that, these metrics are being collected for maintenance purposes. Narasimhan and Hendrad-
jaya (2007) have proposed a series of dynamic metrics for the purpose of maintenance.

Metrics behavior under the criteria modularity
The metrics mentioned in Table 5 measure several aspects on the size of a component. A high
value for the metrics WMC, and CPC, implies a large component. If CRIT Size is high, it means
the component has letter degree of modularity. A high value for the metrics CRIT Inheritance and
NOC, imply that the corresponding component is considered to less reusable. It is noted that a
component is considered good, if it is has an appropriate size so as to make it less complex and
highly reusable.

Software Architecture of Metric Evaluation System
The software architecture of metric evaluation system is provided in Figure 2. The system has
the following six major components:

• Benchmark suite that contains programs, whose source/object codes are used for metric
generation

• Instrumentation program suite that facilitates collection metric values from the bench-
mark programs

• Compiler that takes the benchmark suite as input for the instrumentation program, com-
piles and executes

Table 4: Relative values for metrics ideal for the
quality factor - Testability

Name of
metric

Relative value
of metric

Implication for Tes-
tability

NOC Increases Increases
RCC Increases Increases
CID Increases Increases
CRIT Bridge Increases Increases
CRIT Link Increases Increases

Table 5: Relative values for metrics ideal for the qual-
ity factor -Modularity

Name of met-
ric

Relative value
of metric

Implication for
Modularity

WMC increases Increases
CPC increases Increases
CRITInheritance increases Increases
CRITSize increases Decreases
AC increases Increases
NOC increases Decreases

Narasimhan, Parthasarathy, & Das

735

• Metric values generator, which is the output of the instrumentation program, that gives
the metric values for the benchmark software

• Inferences engine is the place at which inferences are made from the various metric val-
ues

• Metrics visualization environment

Various benchmark software selected on the basis of some criteria is given as inputs to the in-
strumentation program which, when compiled and executed by the compiler, gives the metric
values as outputs. Inferences are made based on the outputs and the theoretical analysis and the
best matched metrics suite for a given context is concluded.

Compiler

JCIFS
lDap
jUnit
jGrasp
……

1) jDepend
2) Metrics 1.3.6Instrumentation

program suiteBenchmark
Suite

1
2

3

Inferences
Engine

Metric values
generator

Metrics Visualization
Environment

4

5

Figure 2: Software architecture of metric evaluation system

Instrumentation Programs
Instrumentation programs concern a set of programs or tools used for collecting metrics from var-
ious benchmark software systems. The instrumentation programs provide output in the form of
data units, which might be a direct or indirect representation of some of the metrics of the three
suites considered. If the data units are in indirect form, the required calculations/transformations
are performed by the authors.

jDepend (jDepend, 2007) and Metrics 1.3.6 (Metrics 1.3.6 2007) are the instrumentation pro-
grams used to facilitate data collection. JDepend software is used to collect data for the following
metrics: CRIT Inheritance, CRIT Size, COID, CAID, and CIID. In the developer’s own words,
“JDepend traverses Java class file directories and generates design quality metrics for each Java
package”. JDepend allows automatic measurement of the quality of a design in terms of its exten-
sibility, reusability, and maintainability to manage package dependencies effectively. The output
of the software is the following units.

Metrics 1.3.6 software is used to collect values for the following metrics directly or indirectly:
NOC, WMC, DIT, CPD and LCOM. Metrics 1.3.6 provides metrics calculation and dependency
analyzer plug-in for the Eclipse platform. It measures various metrics with average and standard
deviation, detects cycles in package and type dependencies and provides a graphical visualization.
This package is operating system independent developed for the Java programming language.

Metrics for Component Based Software Engineering

736

The following procedure has been adopted to collect metric values from the output of the instru-
mentation programs:

a) The outputs of the JDepend software provides values for the metrics: COID, CIID, CRITInheri-

tance, CRITsize over a (Java collection) data structure.

b) Values for the metric CAID, CID and COID are calculated manually based on the definition
of the CAID. The indirect values for CIID and COID have been obtained from the software
outputs.

c) From the output of Metrics 1.3.6, values for the metrics NOC, DIT, LCOM and WMC have
been collected directly.

d) CPD is calculated by considering the mean value of the Number of Classes for each bench-
mark program.

Benchmarking the Metrics
This section provides an overview of the software packages which are used as source inputs for
collecting values of the various metrics. A good benchmark has been empirically defined (based
on observations of several software systems) as a software containing at least 50 classes, and
15,000 lines of code and further, the code has is to be available over any object-oriented lan-
guage. In this paper, the emphasis is on preserving the properties of CBSE in an integrated envi-
ronment such that the application yields the expected results. Therefore, if the value of a metric
determines the component for which the metric value has been calculated as stable, reusable,
more abstract and less complex, then that benchmark is considered stable. Otherwise, some of the
components in the benchmark may need to be re-designed. Several benchmark packages of dif-
ferent sizes and varying modules have also been considered in this work. The following criteria
have been used in the selection benchmark software:

(i) Code should be object–oriented: The package code is to be written in any object–oriented
language.

(ii) The size of package: The size of the package should be large enough to depict a practical
scenario, i.e., the packages with at least 20,000 lines of code are considered. The number of
classes should be at least 50.

(iii) Transparency of source code: Packages for which the source code is not transparent are se-
lected for black-box testing and reuse. By the definitions of CBSE, the complete source code
of a component may not be available for any developer while reusing the component. There-
fore, to depict the real-life scenario, packages with object codes have only been considered.

Inferences from the Results
Table 6 provides a snapshot of the characteristics of the chosen benchmark software programs.
Table 7 provides the values of various metrics for the six
benchmark programs chosen. Inferences are listed below
based on the theoretical definitions and the metric values
collected. The best suite of metrics that matches the con-
text of measuring the integrated components has also
been provided. Among the three suite of metrics used for
comparison purpose, we chose the best ones matching
the context of measuring the integrated components in
order to measure various values.

Table 6: Characteristics of benchmark
software programs

Benchmark
programs

No. of
classes

No. of sub-
components

lDap 339 16
JCIFS 141 8
jGrasp 1265 18
jUnit 107 8

Narasimhan, Parthasarathy, & Das

737

• Inferences from the CIID metric: A high value for the CIID metric implies that the com-
plexity is high. lDap, JCIFS , mouseGestures and Element packages have comparably
low values.

• Inferences from the COID metric: A high value for the COID metric implies that the
complexity of the component is relatively high. Mouse Gestures, lDap, JCIFS and jGrasp
have low COID values, which implies that their complexity is less.

• Inferences from the CAID metric: A high value for the CAID metric implies that the re-
usability property of the component decreases. The complexity of the component is con-
sidered high thus increasing the effort of testability. CAID metric value is relatively small
for all the benchmarks considered.

• Inferences from the CRITInheritance metric: A high value for the CRIT Inheritance metric im-
plies a highly modular component; high modularity makes a component more reusable.
lDap, jUnit and jGrasp are considered to be highly modular.

• Inferences from the CRITSize metric: If this value is high, it means it is less modular and
hence less reusable. For the benchmarks, the metric values are within the threshold value
except for jGrasp.

• Inferences from the AC metric: A high value for the AC metric implies that the compo-
nent is highly modular. lDap and jGrasp are considered highly modular.

• Inferences from the NOC metric: A high value for the NOC metric implies that the com-
ponent is highly reusable, but testability effort is relatively high. lDap, JCIFS, and jUnit
are relatively highly reusable.

• Inferences from the CPD Metric: From the theoretical analysis, if a high value for the
CPD metric implies that the reusability decreases. Among the considered benchmarks,
lDap, JCIFS and mouseGestures have low CPD values and hence highly reusable.

• Inferences from the CID metric: A high value for the CID metric implies that the reus-
ability decreases. Further, the time taken for testing and component complexity is high.
MouseGestures and Element packages have low CID values, thereby having high reus-
ability and less complexity.

Table 7: Table of metric values

Metrics Junit Element mouseGestures Idap JCIFS jGrasp

CPD 13.375 19 4.5 6.25 0.5 70.7
CID 61 6 11 114 70 204
CIID(Ce) 315 6 10 89 51 159
COID(Ca) 91 1 1 25 19 45
CAID(CID/8) 7.625 6 5.5 7.125 8.75 11.34
CRIT Inheri-
tance 93 19 8 91 4 1142
CRIT size 0 0 0 0 0 1
AC(=CID) 61 6 11 114 70 204
NOC 16 4 0 22 18 1
LCOM 0.91 0.855 0.778 0.627 0.753 0
DIT 6 4 6 8 7 1
WMC 822 407 46 763 539 37

Metrics for Component Based Software Engineering

738

• Inferences from the LCOM metric: A high value for the LCOM metric implies that the
reusability of that component is high and the component is relatively less complex. jUnit,
Element and JCIFS have very high values. It is inferred that all the packages are rela-
tively reusable except jGrasp.

• Inferences from the DIT metric: If the value of DIT is high, reusability is high and com-
plexity is high (Chidambar & Kemerer, 1994). lDap, JCIFS, mouseGestures and jUnit are
highly reusable and highly complex. This metric value and the inferences indicate that
these kinds of metrics are not efficient at measuring the CBSE qualities, as they consider
the value of the entire application as a single component.

• Inferences from the WMC metric: If the value of WMC is high, reusability is considered
low. The packages lDap, JCIFS, jUnit are less reusable. This metric value and the infer-
ences indicate that these kinds of metrics are not
efficient at measuring the CBSE qualities, as they
consider the value of the entire application as a
single component.

• Inferences on CRITInstability Metric: The values for
CRIT Instability for the benchmarks, calculated using
the formula as defined by Martin (1995), is given
in Table 8.

From the values quoted in Table 7, it is inferred that the
some of the components of jGrasp and JUnit need to be
redesigned.

Discussion and Conclusions
This paper provides a systematic comparison of three suites of metrics. The comparisons (Table 7
& 8) allow a user to choose the best applicable metric based on their particular requirements. The
metric values provided are helpful to study the behavior of metrics under various quality factors.
The metrics defined by Chidamber and Kemerer (1994) considered in this paper (WMC, NOC,
DIT and LCOM) do not measure quality of integrated components. The metrics may be applica-
ble to analyze reusability, complexity and size indirectly, but they are not sufficient to measure
testing time and maintenance. The metrics defined by Cho et al. (2001) are CPC, CSC, CDC, and
CCC and these metrics prove deficient for black- box testing. These metrics deal with the com-
plexity of the code, which requires the availability of the entire source code. Since Cho metrics
calculate the complexity of metrics by using the combination of the number of classes, and inter-
faces, the calculation of cyclomatic complexity with the sum of classes and interfaces needs in-
formation from the source code, which is a shortcoming. This proves successful only if the devel-
oper has access to the source code. Narasimhan and Hendradjaya (2007) metrics test to check if
any incorrect operations are not inherited by the subcomponents. Dynamic metrics measure main-
tenance and testing issues as a consequence of execution of the code. The metrics measure several
aspects, such as reusability, complexity, testing-time, size and maintenance. The formulas pro-
vided for each metric considers the average of the subcomponents rather than a single component,
thus extending them to an integrated environment also. The suite of metrics proposed by Nara-
simhan and Hendradjaya prove to be efficient at measuring the quality of integrated components.
However, there are some limitations that restrict the use of this suite of metrics, which are dis-
cussed below: The lack of threshold values restricts the suite of metrics theoretically hindering its
use practically. Narasimhan and Hendradjya have intuitively defined the values using representa-
tive software, but an accurate threshold value calculated by quantifying and testing more empiri-
cal dataset is necessary. Criticality of the metrics means the limitations that stop the use of met-

Table 8: Values of CRITInstabil ity for
different benchmark software

programs
Benchmark Value for

the metric
lDap 2
jGrasp 7
JUnit 6
JCIFS 2
mouseGestures 0
Element 0

Narasimhan, Parthasarathy, & Das

739

rics for practical purposes and requires immediate solutions. Future research can be carried out in
the following directions: 1) Collecting metric values for further benchmarks to study metric be-
havior, 2) Revising the formulas used for calculation of metrics for greater accuracy and 3) Set-
ting appropriate Threshold values.

References
Ali, S. S., & Ghafoor, A. (2001). Metrics-guided quality management for component-based software sys-

tems. Proceedings of the 25th Annual International Computer Software and Applications Conference,
pp.303-308.

Bertoa, M. F., Troya, J. M., & Vallecillo, A. (2003). A survey on the quality information provided by soft-
ware component vendors. Proceedings of the 7th ECOOP Workshop on Quantitative Approaches in
Object – Oriented Software Engineering , pp.25- 30.

Browne, J. C., Werth, J., & Lee, T. (1990). Experimental evaluation of a reusability-oriented parallel pro-
gramming environment. IEEE Transactions on Software Engineering,16(2), 111-120.

Boehm, B.W. et al. (2000). Software cost estimation with COCOMO II. Prentice Hall Ed ition.

Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object-oriented design. IEEE Transaction
on Software Engineering, 20(6), 476-493.

Cho, E. S., Kim, M. S., & Kim, S. D. (2001). Component metrics to measure component quality. The 8th
Asia-Pacific Software Engineering Conference (APSEC), pp. 419- 426.

Henderson-Sellers, B. (1996). Object-oriented metrics: Measures of complexity. Prentice Hall.

JDepend. (n.d.). Available 10 September, 2007 at http://clarkware.com/software/JDepend.html

Kan, S. H. (2002). Metrics and models in software quality engineering. Addison-Wesley Professional.

Lorenz, M., & Kidd, J. (1992). Object–oriented software metrics: A practical guide. Engle wood Cliffs,
N.J: Prentice-Hall.

Martin, R. (1995). Designing object-oriented C++ applications using the Booch method. Englewood
Cliffs, NJ: Prentice Hall.

Metrics 1.3.6. (n.d.). Available 10 September, 2007 at http://metrics.sourceforge.net/

Narasimhan, V. L., &.Hendradjaya, B. (2007). Some theoretical considerations for a suite of metrics for
the integration of software components. Information Sciences: An International Journal, 177(3), 844-
864.

Pfleeger, L. S., & Fenton, N. E. (1998). Software metrics: A rigorous and practical approach. Brooks/Cole
Publications.

Pressman, R. S. (2001). Software engineering: A practitioner’s approach. McGraw Hill.

Washizaki, H., Yamamoto, H., & Fukazawa, Y. (2003). A metrics suite for measuring reusability of soft-
ware components. Proceedings of the International, pp. 211- 223,.

Weyuker, E. J. (1998). Testing component–based software: A cautionary tale. IEEE software, 15(5), 54 –
59.

Metrics for Component Based Software Engineering

740

Biographies
Narasimhan is a Professor of Software Engineering in the Department
of Computer Science at East Carolina University, USA. He has pub-
lished over 180 papers in the areas of Software Engineering and Infor-
mation Engineering. In particular, his research interests are in com-
puter architecture, parallel and distributed computing, software testing,
text & audio processing and mining, E-Commerce, Software process,
asset management systems and Standards, and information manage-
ment & fusion. His papers have appeared in such archival journals and
international conferences. Prof. Narasimhan is a Senior Member of the
IEEE and ACM, Fellow of ACS, IEAust and IEE (UK). He is a Tech-

nical Member (representing USA) of the Expert Panel of ISO (International Standards Organiza-
tion) and ANSI.

Miss. Prapanna Parthasarathy obtained her BS in Computer Science from Sri Venkateswara
University, India, and MS in Computer Science from Western Kentucky University, USA. Par-
thasarathy is currently working for Lexmark Printers Inc. at Louisville, KY, USA. Her research
interests are in the areas of component based software engineering, software metrics and testing.

Manik Lal Das received his Ph.D. degree from Indian Institute of
Technology, Bombay in 2006. Currently he is an Assistant Professor at
Dhirubhai Ambani Institute of Information and Communication Tech-
nology, Gandhinagar, India. He has over 11 years of R&D and teach-
ing experience in Computer Science. He has published over 40 re-
search articles in refereed Journals/Conferences. He is a member of the
IEEE, Cryptology Research Society of India and Indian Society for
Technical Education. His research interests include Cryptology and
Information Security.

