Issuesin Informing Science and Information Technology Volume 6, 2009

Cross-Departmental Collaboration for the
Community: Technical Communicators in a
Service-Learning Software Engineering Course

Joseph Chao and Jennifer Brown
Bowling Green State University, Bowling Green, OH, USA

jchao@address.edu; jkbrown@bgsu.edu

Abstract

This paper discusses a collaborative service-leguapproach to a software engineering course
that involved partnering with local non-profit orgaations and collaborating with a technical
communication class. The main goals of the collatian with the technical communication class
were to provide the students with a realworldgrbjhat gave them experience with a cross-
departmental team collaboration and to improvedtieumentation accompanying the software
that was developed for the non-profit organizatigkasother goal was to, in turn, reduce the bur-
den on the computer science instructor to prowedérical support for the software after the end
of the semester.

We describe the courses involved, the goals fomagithod of collaboration, limitations, student
survey responses, and lessons learned from tliebortion. As expected with a first attempt at
a cross-departmental collaborative project, stugentey results showed both positive and nega-
tive impressions of the collaboration. With furthiexnsforming of the curriculum, we believe this
type collaboration holds value as an effective e ibf providing real-world experience, not

only with developing software and working with @&at, but also with collaborating with team
members from other disciplines.

Keywords: Software Engineering, Agile Software Developméiger documentation, Active
Learning, Service-learning, Realworld project, fiiical Communication.

Introduction

Traditionally in a project-based software enginegdourse, students learn software development
skills by working on tightly controlled classroomofects provided by instructors. While such
projects provide valuable software development Bepees to students, service-learning projects
expose students to realworld situations that calmmeasily replicated in classroom projects.

Service-learning is an active-learning pedagogy itttagrates community needs with student
learning. As defined by Bringle and

Material published as part of this publicationheiton-line or Hatcher (1995)1 SerVice'leaming is a

in print, is copyrighted by the Informing Scien cstitute. “course-based, credit bearing educa-
Permission to make digital or paper copy of paralbof these tional experience in which students (a)
works for personal or classroom use is grantedowuitliee participate in an organized service activ-

provided that the copies are not made or distribémep rofit . . e .
or commercial advantage AND that copies 1) bear btice ity that meets identified Commun't)/

in full and 2) give the full citation on the firpge. It is per- ne_ed§, and (b) reflect on th(_a service ac-
missible to abstract these works so long as ciedjven. To tivity in such a way as to gain further
copy in all other cases or to republish or to pust server or ynderstanding of curricular content, a

to redistribute to lists requires specific pernossand pay ment P T
of a fee. ContadRublisher@InformingScience.ortp request broader appreciation of the discipline,

redistribution permission.

Cross-Departmental Collaboration for the Community

and an enhanced sense of personal values andesygonsibility.”

Service-learning in software engineering has beslor@&ced by many such as Liu (2005), Poger
and Bailie (2006), Song (1996), and Tadayon (200dgy found that service-learning software-
development projects not only provide students vetl-world experience in their technical and
social skills, but also instill civic responsibyliand ownership in students. Some (Purewal, Ben-
nett, & Maier, 2007; Rosmaita, 2007) also sugdesst the service-learning pedagogical approach
may attract more motivated and higher-achievindesits to the computer science discipline,
which could be a major benefit for the discipliaspecially when computer science student en-
rollment has been decreasing for the last few yzaster, 2006).

While service-learning in software engineering searis not new, it has not been widely applied
in the discipline partly because of its challengasich include, most notably, additional time and
organizational demands on instructors, and main@naeeds after the completion of the pro-
jects. The issue of additional demands on instraaieeds to be addressed according to one’s
circumstance; the system maintenance issue caadalquite complicated. One solution to the
maintenance issue is to have a support centenggested by Chase, Oakes, and Ramsey (2007).
An “Agile Software Factory” has also been propobgdhao and Randles (2009) in supporting
the maintenance effort for student service-learpiagects. As another solution, this paper sug-
gests adding technical writers to the service-legrproject teams with the intent of producing
better documentation for easing the burden of reaace.

It is our experience, in past service-learningvgafe development, that documentation produced
by the student software developers was typicallydoality and/or scarce. The causes for the
weak documentation can be attributed to two maseas: 1. There is limited time for software
development itself, which implies limited time foreating documents, and 2. Students in com-
puter science or software engineering are noteidaim technical communication (writing) and do
not enjoy writing much.

Aiming to improve the quality of the software doamtation for the service-learning projects,
the instructor from the Computer Science Progradith@ instructor from the Scientific and
Technical Communication Program collaborated insiamester of 2008 with the goal of adding
technical communication skills to the software dempment teams. That goal manifested itself as
a curriculum that involved upper-level technicaloounication students serving as the technical
communicators for software development studentshEsam of students worked with a client
from a local non-profit organization to developta@fre that would fuffill a need of the client.

The technical communication students wrote the-ceatered release notes and delivered those
to the client with each iteration of the softwaéso, the technical communication students wrote
the final user documentation as an HTML help file.

At the beginning of the semester, the softwarenesging students were divided into six teams
and assigned an already-solicited service-leagmiogct for a community partner. Next, the
technical communication students were assigneddambthe six teams. Four of the teams were
assigned two technical writers each; two of thenewere assigned one technical writer each.
Our collaboration, in total, involved fifty-six stants—forty-six from the software development
class and ten from the technical communicationsclas

The service-learning projects were provided throinghAgile Software Factory
(http://agile.bgsu.eduThe Agile Software Factory (ASF) was founde@@®8, with a grant

from the Agile Alliance, by a faculty member undee Department of Computer Science at our
university. The Agile Software Factory has threenngaals:

1. Promote the practice of service-learning at thevérsity, particularly within the De-
partment of Computer Science.

Chao & Brown

2. Cuttivate connections between students in the soitwlevelopment class and non-profit
organizations that need software developed (whadpshto achieve goal #1).
3. Provide ongoing support for the developed software.

To expand on these three goals, the ASF is onetoviagtter equip our computer science students
for their future careers by providing them with rearld experience using the agile approach to
software development. The ASF also provides thetgakt and support of a classroom com-
bined with the excitement and pressure of comgediprofessional-quality project for a real cli-
ent.

As we continue to develop the ASF and solicit spostsips, we intend to provide more opportu-
nities for students outside of the software devalpt class to be involved in the ASF.

The Service-Learning Software Engineering Course

Software Development in the Department of Comp8taence is a project-based software engi-
neering course that teaches the crafts of softeraggeering to students via a large-scale hands-
on software project. Because this is the firstvgafe engineering course for most of the students,
it is expected to cover all topics throughout tbenplete software development life cycle, includ-
ing planning, analysis, design, implementationtjngs and maintenance of large software sys-
tems. In addition, project management and otheahnuaspects of software development are dis-
cussed. Although it is possible to teach softwaugneering using a tightly controlled classroom
project, anecdotal evidence has shown that stutams better in a realworld environment. De-
spite knowing how challenging implementing real-d@oftware projects in a classroom setting
can be, the instructor decided to adopt the sete@ming pedagogy as a way to provide students
with real-world experience.

In the fall semester of 2008, six new software tgweent projects from local community part-
ners were selected for students to work on. A ttédrty-six students, mostly undergraduate
seniors and first-year graduate students, in tasscéections were grouped into six teams, one for
each project. After adding student technical wsiteom a technical communication course in the
English Department to the teams, each team endedtluseven to ten members.

One of the major challenges of teaching this ser@arning course is that most students who
take the course do not have any prior knowledg®fitware engineering and are required to
complete a quality software system in a short six@eek semester. The instructor must quickly
provide enough information/knowledge for the studerstart the project as early as possible so
that there will be enough time for the teams talpee a qualty system that can be useful to the
client. Thus, the first three weeks of the semaséze used to quickly introduce the concept of
software engineering, software process modelse@rgjanning, and requirement analysis to fa-
ciltate the first customer meeting scheduled dutire fourth week.

To mitigate the risk of not delivering a qualitysgym to the client at the end, an iterative and in-
cremental agile software process based on eXtreoggdmming (Beck, 2000) and Scrum
(Schwaber & Beedle, 2001) was used for all teanith the iterative and incremental approach
and fast customer feedbacks, it ensures the delbfea useful system for the customer at the end
of the semester. This agile process model waseapgliccessfully by student teams in a similar
course taught previously by the same instructoa@CR005), and was recommended by many
other educators, such as Alfonso and Botia (2005).

The project was broken into five iterations, sefmtine periods of two to three weeks each. It-

eration 0 was intended for project preparationuaing tasks such as meetings with customers,
research on technologies, and preliminary projeeining and estimation; Iterations 1 through 4
each contained a set of user stories (system emogmts) to be completed, tested, and delivered

Cross-Departmental Collaboration for the Community

to the client for evaluation and feedback at the @frthe iteration. All computer science students
in a team were to be developers with a sharedrr@eoject planning and management. Because
this course does not have an associated lab, ssusigfmedule their own meetings and time for
project development.

Technical writers were introduced for solving thigial problem that instigated the collaboration:
poor end-user documentation. We wanted to providesbftware users with usable documenta-
tion that would enable them to efficiently compléte desired tasks on their new software, and to
reduce the burden on the computer science instrtecfwovide software support after the prod-
uct had been delivered. The collaboration alsoigeavboth groups of student valuable learning
experience in providing quality user documentat@ra real-world project. The documents the
teams created collaboratively included a projea pkevised after each iteration), release notes
for each delivery, a user manual, and online help.

Collaborating with the Technical Writers

At the beginning of the semester, the softwarenesging students were informed of the collabo-
ration; the technical communication students wefierined of the collaboration prior to the start
of the semester via emails from their instructor.

To mimic a realworld situation and to effectivalprk under the sixteen-week time constraint of
a college semester, the first thing the softwagineering students learned in their class was their
project deadline. The instructor determined thedlieaand required that each software project
consist of five iterations, the deadlines of whigdre also set by the instructor. The students,
however, were responsible for interviewing theiem, listening to the client’'s needs, assessing
how a software program could meet those needshanddetermine the extensiveness of the
product. In line with the agile approach to softevdevelopment, the students also broke the total
extensiveness of the product into the five requie@tions, deciding what functionality would

be completed and delivered to the client with etrhtion.

After the software engineering students had detailé their projects, they were assigned one or
two technical communication students. The extens®s of the project determined whether a
team was assigned one technical writer or two—ahens with more extensive projects were as-
signed two technical writers; the teams with ledemsive projects were assigned one technical
writer.

The instructors of the courses had explained th blasses that the technical communicators
would complete the release notes for the cliertt eéch iteration, create the final user documen-
tation in the form of an online help file, and pic their expertise to make any team document
more usable. However, the students were to, e, tietermine what specific role the technical
communicators would fill, when they would receitve tomputer science students’ notes about
each iteration so they could document it, and wthey would need to submit the release notes to
the computer science students so the computercec&udents could provide the notes to the
client with the iteration. The collaborative teawsare also to determine how the technical com-
munication students would access the software andie computer science students would
communicate with them and keep them abreast girtigress of the project.

Schedule

Because project completion was limited to the smteveeks within the semester, the students
were allotted no more than two weeks to work orhdieecation before providing the iteration’s
deliverable. Table 1 shows the schedule the stsidesre provided, limited to only the mile-
stones for the project:

Chao & Brown

Table 1: Semester Schedule

Week (s) Service-lear ning pr gject task

1&2 Introduction to software engineering and the prigjec

3 Form software development project teams and ra@asnents, as well as the software devel-
opment and technical communication combined teams.

4 First customer meeting and Iteration §),(Which consisted of planning and a require ments
analysis.

5 Second customer meeting to review require mentspaojdct plan.

6& 7 Workon k and accompanying documentation.

8 Deliver I; (a working system) with accompanying release natebupdated project plan to client.
9 Work on b and accompanying documentation.
10 Deliver |, (a working system) with accompanying release natesupdated project plan to client.
11 Work on k and accompanying documentation.
12 Deliver k3 (a working system) with accompanying release natesupdated project plan to client.

13-15 |Work on |,. Perform qualitative usability test.

16 Deliver final software product and accompanying woentation (as a compiled help file) to cli-
ent.

Method of Student Communication

The software engineering students did not workheir projects solely in class, but worked asyn-
chronously outside of class as well. The techmioaimunication class was an online class that
semester, so unless the students made an effogdbface-to-face in their own time, they col-
laborated electronically and usually asynchronaBgcause of the asynchronous component of
the collaboration, the students needed effectwts to communicate with one another. In addi-
tion to phone calls and emails, the students asd several online collaboration tools:

e Wikis
» A file exchange server
* Microsoft Visual Studio Team Systems, which inclideversion control system

These tools also allowed each student to docurhenwork he or she had done on the project and
keep his or her team members abreast of the psodvieseover, these tools allowed the instruc-
tors to evaluate each student’s contribution topttagect.

Assessment and Evaluation

Challenges/Limitations

Before the semester began, we, the computer saamteechnical communication instructors,
brainstormed any foreseeable limitations with tbkaboration in an effort to negate some of
those limitations and avoid disaster. We determibadged on past experience, that the major
limitation would most likely be time. Most of outuslents carry full course schedules, are in-
volved in organizations on and off campus, and veopart-time job. It would therefore be diffi-
cult for our students to coordinate group meetwis one-hundred-percent attendance.

Cross-Departmental Collaboration for the Community

We decided the best thing we could do to negateffeets of time limits was to design our
courses so that the collaborative service-learpingects served as the focus as well as the cap-
stone of the courses. All class assignments, tbergdvere building blocks to completing the pro-
ject by cultivating the skills the students woudeed for the project. Additionally, the computer
science instructor designated some in-class work tia project.

Assessment

The value of any new approach to learning or tewctan be lost if its effectiveness isn't evalu-
ated. Therefore, before the semester began, wiieista a set of criteria to determine if the col
laborative service-learning project was successfilishould be continued in the future, and how
it could be improved in the future:

1. Quality of documentation: Is the documentation lesédy the clients? We will determine
this by way of client surveys sent one week afte felease and two months after final
release. We will also have the students performed tqualitative usability test with the
clients.

2. Student feedback: Do the students agree thatélaendd something valuable from the
project itself and the collaboration? We will detdre this through an anonymous survey
at the end of the semester.

3. Student articulation of learning: Can the studgoist to the goals/benefits of the steps
in the process and relate them to an outcome girthject? Can students identify what
they would do differently next time if they werecdal with the same or a similar project?

Survey Results

In order to receive student feedback on the cotsimn, we conducted two different surveys—
one for the computer science students in the Soétkagineering course and one for the techni-
cal communication students.

Survey of the computer science students

An anonymous survey to the forty-six computer staestudents was conducted at the beginning
of the second iteration (the ninth week of the sgemg to which forty-four students responded.
An overwhelming majority (93%) of the students gafbworking on their real-world project,

and more than 95% students believed that the #&dlisied in the class were applicable to the real
world. Forty-three percent of the students felt tha workload in the class was either high or too
high due to the project demand, and less than S¥4gtt that it was low.

On the questions related to their clients, 93%hefdtudents believed that they understood the
needs of their clients, but only 75% of them thdubat their clients were satisfied with their
work so far. While 77% of the students believed thay had acted professionally with their cli-
ents, only 61% of them thought that the commurocawiith the clients was prompt and painless.

Most of the students (80%) felt that they were wykvith a good team, 79% were satisfied with
the project progress at this point, and 89% ofstiieents were confident that they would produce
a useable system at the end to meet the clientdsne

Concerning the technical writers on their team8&s @ the computer science students understood
the contribution by their technical writer, but @nma 45% of them thought the collaboration was
effective, purposeful, and useful. Table 2 beloevshmore details for the student responses on
the survey questions.

Chao & Brown

Table 2: Survey results of the Software Engineering students after the first iteration

] Strongly] Strongly
Questions Agree Agree Neutr al Disagree Disagree
l enjoy working on the real- 25 (56.8%)| 16 (36.4%) 2 (4.6% 1(2.3% 0
world project in this course.
The sk|II§ | learned in this class 24 (54.6%)| 18 (40.9% 2 (4.6% 0 0
are applicable to the real world.
. . Too High High Just Right Low Too Low
The workload of this class is ... 4(9.1%) | 15 (34.1%)| 23 (52.3%)| 2 (4.6%) 0
My team has worked
with/interacted with the cus- 8(18.2%) | 26 (59.1%)] 10 (22.7%) 0 0

tomer as professional service
providers would.

The communication between my
team and the customer has beg¢n 7 (15.9%) | 20 (45.5% 9(20.5% 8 (18.2%) 0
prompt and painless.

I understand the customer neeq

S 0, 0, 0, 0,
for the system 16 (36.4%) | 25 (56.8%) 2 (4.6% 1(2.3% 0

The customer was satisfied with
the iteration plan presented in | 13 (29.6%)| 20 (45.5% 11 (25% 0 0
our project plan.

| feelthat | am working with a

11 (25%) | 24 (54.6%) 7(15.9%) 2 (4.6% 0
good team.
lamsatisfied with the project | 7 15 g0 | 28 (63.6%] 5(11.4%) 4(9.1% 0
progress so far.
| am confident that my team wil
produce a useable systematthe, o g 1000 | 93 (52.30) 4(9.1%) 1(2.3% 0

end that meets the customer
needs.

Our collaboration with the tech-
nical communicators on our
team has been effective, pur-
poseful, and useful.

4(9.1%) | 16(36.4%) 18(40.9%) 5(11.4%) 1(2.39

~

I understand what the technical
communicators contribute to odr 9 (20.5%) | 24 (54.6% 8(18.2% 2 (4.6% 1(2.3%)
team project.

When asked in an open-ended question of “What ddilge about this class?” working on a real
world project and/or interacting with real cliemias clearly the student favorite with 25 refer-
ences. Others indicated that they have learneidenipyed the teamwork, etc. When asked in
another open-ended question of “What do you disieut this class?” several students disliked
the class examination and a couple of other nojegrroelated issues. On project-related feed-
backs, six students had concerns about the higkloeat, five students were frustrated with
teamwork problems, and two students were unhapibytiaeé grading mechanism for the project.

Survey of the technical communication students

The technical communication students were askedrigplete an online, anonymous survey dur-
ing week thirteen of the semester, just after theaqumentation for iteration 3 was due. The sur-
vey consisted of twelve statements with which tinelents were asked to rank their level of
agreement. The instructor did not want to provigETt with a “neutral” option as an answer to
any of the questions, but to restrict them to cimgpsn the side of somewhat agreeing or some-

Cross-Departmental Collaboration for the Community

what disagreeing as an alternative to “neutral.’tt@ften students in the course, nine of the stu-

dents completed the survey.

Overall, the technical communication students agysitively (in varying degrees) with the
statements, suggesting they did indeed see vathe iollaboration and their team was, for the
most part, working effectively. Table 3 provides Burvey statements and the students’ re-

sponses.

Table 3: Survey results of the technical communication students after the third iteration

Questions

Strongly
Agree

Agree

Some-
what
Agree

Some-
what Dis-

agree

Disagree

Strongly
Disagree

| believe this collaboration has
given me an experience similar
to collaborating in a work set-
ting.

4 (44.4%)

2(22.2%

0(0.0%)

2(22.29

0 (0.0%)

)1(11.1%)

| believe that what | have
learned from this collaboration
will be useful in my future ca-
reer.

3(33.3%)

3(33.3%

2(22.2%

0 (0.0%

1(11.d

%0 (0.0%)

I have gained beneficial skills in
working with a teamthrough thi
collaboration.

53 (33.3%)

3(33.3%

1(11.1%

2(22.29

0 (0.p%

0(0.0%)

I have consistently done the be
work | could do throughout this
collaboration.

5t
4(44.4%)

5 (55.6%

0(0.0%)

0 (0.0%

0 (0.0%

)0 (0.0%)

Our ENG/CS team has commu
nicated effectively throughout
this process.

3(33.3%)

0(0.0%)

3(33.3%

2(22.29

1 (119

50 (0.0%)

| feelthe CS team members ef-
fectively use my skills as a tech
nical communicator.

- 2(22.2%)

3(33.3%

1(11.1%

0 (0.0%

1(11.)9

02 (22.2%)

Through this collaboration, |
have come to better understan
how to create documents for a
client.

4 (44.4%)

3 (33.3%)

1(11.1%

0 (0.0%

1(11.9

60 (0.0%)

Through this collaboration, |
have come to better understan
how to manage a client relation
ship.

12 (22.2%)

1(11.1%

5 (55.6%

0 (0.0%

1(11.9

60 (0.0%)

Our ENG/CS team worked col-
laboratively to determine my
responsibilities.

1(11.1%)

3(33.3%

2(22.2%

1(11.19

1(11.)9

61 (11.1%)

| understood my responsibilitieg
for the collaboration at the be-
ginning of the semester.

1(11.1%)

1(11.1%

2(22.2%

1(11.19

1(ra)

3(33.3%)

I now understand my responsi-
bilities for the collaboration.

3(33.3%)

4 (44.4%

1(11.1%

0 (0.0%

0 (0.0%)

)1(11.1%)

Chao & Brown

The one statement the students most disagreeavagt| understood my responsibilities for the
collaboration at the beginning of the semesterg ifbtructors had intentionally left the specific
responsibilities of the technical communicatorsueam order to allow the students to decide
within their teams what tasks exactly the techrecahmunicators would perform and what con-
tributions they would make to the team. They hadjiscussed previously, been informed of their
three basic duties: write the release notes aatidotumentation, and edit to make all team
documents more usable.

However, the survey results for the statement "ENIG/CS team worked collaboratively to de-
termine my responsibilities” received the secomeklst rating for agreement (tying with | feel
the CS team members effectively use my skills &slanical communicator”), indicating the stu-
dents did not work as a team to determine the fipélaties of the technical communicators,
contrasting with the instructors’ expectationstf@ collaboration.

This lack of team-determined responsibilties fe technical communicators seems as though it
could be connected to the survey results for gaiestent “l feel the CS team members effec-
tively use my skills as a technical communicatpgrhaps the computer science students did not
know enough about what the technical communicatoutd bring to the team in order to col
laboratively decide upon the technical communicatiarsks and use their expertise efficiently.
This could perhaps also be the reason behind thehat only 45% of the computer science stu-
dents thought the collaboration was effective. Aalally, the survey of the computer science
students was taken after the first release. A sksorvey later in the semester might reveal that
they've come to better understand the expertiséetttanical communication students have to
offer and see value in the collaboration.

The technical communication students were alsodaiskprovide qualitative feedback on their
experience up to that point in the semester. Fitheoten students provided comment, and in
general, their comments addressed three main issues

1. Difficulty communicating with their team.
2. Computer science students’ unfamiliarity with théerof a technical communicator.
3. Their own uncertainty as to their role in the proje

Lessons Learned

We begin our assessment of the success of thepvaj@ a partial assessment relative to the
second criterion: student feedback. As a blanletestent, according to the surveys, the students
had difficulty navigating their way through thisliadoration; some found value in the collabora-
tion, and some did not.

While the students did not unanimously affirm tladue of the collaboration, enough of them did
seem to reflect positively on the experience aedvadue in it to justify attempting the collabora-
tion with another group of students during anoemnester when both courses are offered. We,
as the instructors, however, have gained valuablght from this collaboration, which we will
apply to our next attempt. We’'ve categorized tHesgsons learned into three areas discussed be-
low. Overall, we have learned that for future iteras, we must detail processes to the teams or
provide discussion points for the teams to deterpiocesses among themselves.

Team Collaborations

Most of the problems with team collaborations weeresult of poor communication. One prob-
lem was that, contrary to our expectations, outesits often didn’t negotiate communication and
workflow on their own. In the future, we will eithexplicitly tell them to determine their own

Cross-Departmental Collaboration for the Community

workflow around their iteration due dates, or wi gvbvide them a step-by-step process, which
is what the technical communication instructor fmled her students for the third iteration.

A second problem with communication was the faat tieither the computer science nor the
technical communication students recognized wiiatrimation they needed to communicate to
their team members from the other course. For eleatige technical communication instructor
assumed that the technical communication and c@npuaience students would communicate to
one another about accessing the software progréang teeve loped. However, the computer sci-
ence students did not think of telling the techhimamunicators how to access the software, and
the technical communicators did not think of askergaccess to the software.

The final problem resulting from communication waalsck of scheduling within the teams. The
students did not work out a schedule among thamtmembers that would provide deadlines to
complete all work for an iteration. For examplegewnce the technical communication students
understood that they were to completely revisectivaputer science students’ release notes, there
was not time for them to do that on some occagdiecsuse development took longer than ex-
pected. In future collaborations, the instructoes/have to provide the teams with a list of dis-
cussion points for their first meeting to determiokes, responsibilities, access privileges, etc.

We may consider a guaranteed two-day window betwsdwem the iteration is done and when the
technical communicators must submit their releagesto the client.

Business Analysis

The technical communication students were notgfattte first client meeting, in which the needs
of the client, and, in turn, the requirements far software, were determined. Therefore, many of
the technical communication students never knewt tigadefining purpose of the software pro-
gram was and what it was supposed to do for thetcli

The technical communicators were involved in subsaimeetings with the client; however,
many of those meetings focused on technicalitiespaogramming aspects that were not appli-
cable to the technical communicators, rather tbanding on the higher-level aspects that would
be relevant to them and the client.

In the future, we would consider involving the teichl communicators in the first client meet-
ing. That way, they could understand what rolestbiéware fills and what the user’s original
needs were. The technical communicators could afser, hearing the user’s needs, perhaps pro-
vide some suggestions for what the software caulibdthem. Indeed, they could perhaps help
out with the “business analysis” portion of thejgct; technical communicators are taught to be
advocates for users and to always think of hovetluce mental burden on their audience.

Documentation

The technical communication instructor assumedtti@technical communication students
would know, based upon their previous knowledgeahnical communication, that when they
were asked to write user documentation for eacatitm, they were not to simply edit the engi-
neer-centered release notes written by the compaience students. Instead, they were to com-
pletely re-work the notes to make them suitableHeruser: remove information that was irrele-
vant to the user, write step-by-step instructiamstie user to work with the features of the itera-
tion, provide examples to enhance user understrelin. The purpose of the computer science
students’ release notes was simply to provideebhrical communicators with an update on
what the new features were and how they workedone¢rve as the actual user documentation.

For future collaborations, the technical commurggainstructor will make certain the technical
communicators understand that the notes providetidogomputer science students are not the
user documentation—they are simply scratch notésetéechnical communicator about what the

10

Chao & Brown

system should be able to do. The technical comratoris are supposed to review the notes, work
with the software, and write the user-centeredasslenotes to accompany delivery of the iteration
to the client.

A second lesson learned in the area of documemtagulted from discrepancies between the
documentation provided to the clients and the desuation provided to the technical communi-
cation instructor. For the first few iterationse thoftware engineering and technical communica-
tion instructors did not receive the same versfahe technical communicators’ release notes.
Apparently, the students created release notasbtuitsfor the client deadline, but then further
revised them to submit to the technical commuroeaiistructor, who would then grade the re-
lease notes. That situation was, however, correniddemester; the students were told that they
were to submit the same release notes to the al@htheir instructor. This will be explained
clearly at the beginning of the semester for the oellaboration.

Conclusion

Though the students did not overwhelmingly agre¢ttiey found irreplaceable value in this col
laboration, there was enough positive feedback tham that the instructors will pursue the col
laboration in future semesters. They will do schwiew insights that will ideally make future
collaborations smoother and help the studentsiseeaiue of the collaboration more clearly.

The instructors have yet to assess the collaboréased on three of the four pre-established cri-
teria for determining the success of the projetterAhe end of the semester, the instructors will
survey their students again, asking questionssitifically provide insight into the assessment
criteria of whether students can articulate trearhing. Additionally, the instructors will survey
the clients for their feedback on the software accbmpanying documentation and compare it to
the feedback from previous semesters to see i tkexny improvement in satisfaction with the
deliverable. We believe this type of service-ld@aymollaboration holds significant potential as
an effective pedagogical approach and will contitmugansform it as we receive more feedback
at the end of this semester and through future stemse

Acknowledgements
We would like to thank the following groups of pésp

» Our students: for your flexibility and your cooptoa as we work through this new type
of collaboration, as well as for your open feedbalodut the project and what could be
improved in the future.

» Agile Software Factory: for providing the projeéts this collaboration and serving as
the connection point with our community partners.

» Agile Alliance: for your interest and support instiservice-learning endeavor. We are
certain that your efforts will have a positive effen the students’ learning and their
value to employers when they graduate.

References

Alfonso, M. I., & Botia, A. (2005). An iterative @magile process model for teaching software enginge
Proceedings of the 18th Conference on Softwarerg®ging Education and Training (CSEET'05),
Ottawa, CanadaApril 18-20, 2005, 9-16.

Beck, K. (2000)Extreme programming explained: Embrace charipidison-Wesley.

Bringle, R. G., & Hatcher, J. A. (1995). A servilearning curriculum for facultyMichigan Journal of
Community Service Learning, 212-122.

11

Cross-Departmental Collaboration for the Community

Carter, L. (2006). Why students with an apparenitagbe for computer science don't choose to maior i
computer sciencé&roceedings of the 37th SIGCSE technical symposiu@omputer science educa-
tion. SIGCSE’06, Houston, Texas, USA.

Chao, J. (2005). Balancing hands-on and reseatifitias: A graduate level agile software develomme
courseProceedings of the Agile Development ConferenceX85b).

Chao, J., & Randels, M. (2009). Agile software fagtfor student service learningroceedings of the
22nd Conference on Software Engineering Educatiah Braining (CSEE&T '09), Hyderabad, India,
February 17 - 19, 2009.

Chase, J. D., Oakes, E., & Ramsey, S. (2007). Usiegro jects without pain: The development of the
small project support center at Radford Univerdisaceedings of the 38th SIGCSE Technical Sympo-
sium on Computer Science Education Conference. SE3I7, Covington, Kentucky, USA.

Liu, C. (2005). Enriching software engineering s with service-learning projects and the openmesou
approachThe 27th International Conference on Software Eegimg (ICSE’05), St. Louis, Missouri,
USA ,May 15-21, 2005.

Poger, S., & Bailie, F. (2006). Student perspestige a real world projecd. Comput. Small Coll. Z8),
69-75.

Purewal, T. S., Bennett, C., & Maier, F. (2007).kEating the social relevance: Computing, ethics téed
community.Proceedings of the 38th SIGCSE Technical Symposiu@omputer Science Education
Conference. SIGCSE'07, Covington, Kentucky, USA.

Rosmaita, B. J. (2007). Making service learningeasible to computer scientisBroceedings of the 38th
SIGCSE Technical Symposium on Computer Sciencealoln€onference. SIGCSE'07, Covington,
KentuckyUSA.

Schwaber, K. & Beedle, M. (2001gile project management with Scrupnentice Hall.

Song, K. (1996). Teaching software engineeringufgtoreal life projects to bridge school and indystr
SIGCSE Bulletin. 2@), 59-64.

Tadayon, N. (2004). Software engineering basedendam software process with a real world project.
Comput. Small Coll. 1(@), 133-142.

Biography
Dr. Joseph T. Chao is an Associate Professor in the Department of
Computer Science at Bowling Green State Universiigyhas taught
courses in all aspects of the software developfifieaycle, including
programming, systems analysis and design, dataystems, usability
engineering, and software engineering. Prior ter@g academia, Dr.
Chao has more than seven years of industry experiarsoftware
development, including three years as Directoraffvigare Develop-
ment. His research focus is on software engineevitigspecial inter-
ests in agile methods, programming languages, lpdteoriented
analysis and design. Dr. Chao is the Director ®fAlgile Software
Factory at Bowling Green State University, whichftrended in 2008
with a grant from the Agile Alliance. The Factompyides students
with service-learning opportunities in software inegring. Dr. Chao
holds an M.S. in Operations Research from CaseaifeReserve
University and a Ph.D. in Industrial and Systemgiigering from The Ohio State University.

12

Chao & Brown

Jennifer Brown is an instructor in the Scientific & Technical Com
munication Program within the Department of EngtistBowling
Green State University (BGSU). Jennifer teachessesun introduc-
tory technical communication, online documentatemg professional
editing. She has been teaching at BGSU since 20@bpreviously
worked as a technical writer/trainer for a softwane internet market-
ing company. Jennifer has also freelanced as aitedhwriter, editor,
and consultant for individuals and corporationse 8arned her MA in
Technical Communication from Minnesota State Umsiitgy Mankato.

13

