
Issues in Informing Science and Information Technology Volume 6, 2009

Cross-Departmental Collaboration for the
Community: Technical Communicators in a

Service-Learning Software Engineering Course

Joseph Chao and Jennifer Brown
Bowling Green State University, Bowling Green, OH, USA

jchao@address.edu; jkbrown@bgsu.edu

Abstract
This paper discusses a collaborative service-learning approach to a software engineering course
that involved partnering with local non-profit organizations and collaborating with a technical
communication class. The main goals of the collaboration with the technical communication class
were to provide the students with a real-world project that gave them experience with a cross-
departmental team collaboration and to improve the documentation accompanying the software
that was developed for the non-profit organizations. Another goal was to, in turn, reduce the bur-
den on the computer science instructor to provide technical support for the software after the end
of the semester.

We describe the courses involved, the goals for and method of collaboration, limitations, student
survey responses, and lessons learned from this collaboration. As expected with a first attempt at
a cross-departmental collaborative project, student survey results showed both positive and nega-
tive impressions of the collaboration. With further transforming of the curriculum, we believe this
type collaboration holds value as an effective method of providing real-world experience, not
only with developing software and working with a client, but also with collaborating with team
members from other disciplines.

Keywords: Software Engineering, Agile Software Development, User documentation, Active
Learning, Service-learning, Real-world project, Technical Communication.

Introduction
Traditionally in a project-based software engineering course, students learn software development
skills by working on tightly controlled classroom projects provided by instructors. While such
projects provide valuable software development experiences to students, service-learning projects
expose students to real-world situations that cannot be easily replicated in classroom projects.

Service-learning is an active-learning pedagogy that integrates community needs with student
learning. As defined by Bringle and
Hatcher (1995), service-learning is a
“course-based, credit bearing educa-
tional experience in which students (a)
participate in an organized service activ-
ity that meets identified community
needs, and (b) reflect on the service ac-
tivity in such a way as to gain further
understanding of curricular content, a
broader appreciation of the discipline,

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

Cross-Departmental Collaboration for the Community

2

and an enhanced sense of personal values and civic responsibility.”

Service-learning in software engineering has been embraced by many such as Liu (2005), Poger
and Bailie (2006), Song (1996), and Tadayon (2004). They found that service-learning software-
development projects not only provide students with real-world experience in their technical and
social skills, but also instill c ivic responsibility and ownership in students. Some (Purewal, Ben-
nett, & Maier, 2007; Rosmaita, 2007) also suggest that the service-learning pedagogical approach
may attract more motivated and higher-achieving students to the computer science discipline,
which could be a major benefit for the discipline, especially when computer science student en-
rollment has been decreasing for the last few years (Carter, 2006).

While service-learning in software engineering courses is not new, it has not been widely applied
in the discipline partly because of its challenges, which include, most notably, additional time and
organizational demands on instructors, and maintenance needs after the completion of the pro-
jects. The issue of additional demands on instructors needs to be addressed according to one’s
circumstance; the system maintenance issue could also be quite complicated. One solution to the
maintenance issue is to have a support center, as suggested by Chase, Oakes, and Ramsey (2007).
An “Agile Software Factory” has also been proposed by Chao and Randles (2009) in supporting
the maintenance effort for student service-learning projects. As another solution, this paper sug-
gests adding technical writers to the service-learning project teams with the intent of producing
better documentation for easing the burden of maintenance.

It is our experience, in past service-learning software development, that documentation produced
by the student software developers was typically low quality and/or scarce. The causes for the
weak documentation can be attributed to two main reasons: 1. There is limited time for software
development itself, which implies limited time for creating documents, and 2. Students in com-
puter science or software engineering are not trained in technical communication (writing) and do
not enjoy writing much.

Aiming to improve the quality of the software documentation for the service-learning projects,
the instructor from the Computer Science Program and the instructor from the Scientific and
Technical Communication Program collaborated in fall semester of 2008 with the goal of adding
technical communication skills to the software development teams. That goal manifested itself as
a curriculum that involved upper-level technical communication students serving as the technical
communicators for software development students. Each team of students worked with a client
from a local non-profit organization to develop software that would fulfill a need of the client.
The technical communication students wrote the user-centered release notes and delivered those
to the client with each iteration of the software. Also, the technical communication students wrote
the final user documentation as an HTML help file.

At the beginning of the semester, the software engineering students were divided into six teams
and assigned an already-solicited service-learning project for a community partner. Next, the
technical communication students were assigned to one of the six teams. Four of the teams were
assigned two technical writers each; two of the teams were assigned one technical writer each.
Our collaboration, in total, involved fifty-six students—forty-six from the software development
class and ten from the technical communication class.

The service-learning projects were provided through the Agile Software Factory
(http://agile.bgsu.edu). The Agile Software Factory (ASF) was founded in 2008, with a grant
from the Agile Alliance, by a faculty member under the Department of Computer Science at our
university. The Agile Software Factory has three main goals:

1. Promote the practice of service-learning at the University, particularly within the De-
partment of Computer Science.

Chao & Brown

3

2. Cultivate connections between students in the software development class and non-profit
organizations that need software developed (which helps to achieve goal #1).

3. Provide ongoing support for the developed software.

To expand on these three goals, the ASF is one way to better equip our computer science students
for their future careers by providing them with real-world experience using the agile approach to
software development. The ASF also provides the safety net and support of a classroom com-
bined with the excitement and pressure of completing a professional-quality project for a real cli-
ent.

As we continue to develop the ASF and solicit sponsorships, we intend to provide more opportu-
nities for students outside of the software development class to be involved in the ASF.

The Service-Learning Software Engineering Course
Software Development in the Department of Computer Science is a project-based software engi-
neering course that teaches the crafts of software engineering to students via a large-scale hands-
on software project. Because this is the first software engineering course for most of the students,
it is expected to cover all topics throughout the complete software development life cycle, includ-
ing planning, analysis, design, implementation, testing, and maintenance of large software sys-
tems. In addition, project management and other human aspects of software development are dis-
cussed. Although it is possible to teach software engineering using a tightly controlled classroom
project, anecdotal evidence has shown that students learn better in a real-world environment. De-
spite knowing how challenging implementing real-world software projects in a classroom setting
can be, the instructor decided to adopt the service-learning pedagogy as a way to provide students
with real-world experience.

In the fall semester of 2008, six new software development projects from local community part-
ners were selected for students to work on. A total of forty-six students, mostly undergraduate
seniors and first-year graduate students, in two class sections were grouped into six teams, one for
each project. After adding student technical writers from a technical communication course in the
English Department to the teams, each team ended up with seven to ten members.

One of the major challenges of teaching this service-learning course is that most students who
take the course do not have any prior knowledge in software engineering and are required to
complete a quality software system in a short sixteen-week semester. The instructor must quickly
provide enough information/knowledge for the student to start the project as early as possible so
that there will be enough time for the teams to produce a quality system that can be useful to the
client. Thus, the first three weeks of the semester were used to quickly introduce the concept of
software engineering, software process models, project planning, and requirement analysis to fa-
cilitate the first customer meeting scheduled during the fourth week.

To mitigate the risk of not delivering a quality system to the client at the end, an iterative and in-
cremental agile software process based on eXtreme Programming (Beck, 2000) and Scrum
(Schwaber & Beedle, 2001) was used for all teams. With the iterative and incremental approach
and fast customer feedbacks, it ensures the delivery of a useful system for the customer at the end
of the semester. This agile process model was applied successfully by student teams in a similar
course taught previously by the same instructor (Chao, 2005), and was recommended by many
other educators, such as Alfonso and Botía (2005).

The project was broken into five iterations, separate time periods of two to three weeks each. It-
eration 0 was intended for project preparation, including tasks such as meetings with customers,
research on technologies, and preliminary project planning and estimation; Iterations 1 through 4
each contained a set of user stories (system requirements) to be completed, tested, and delivered

Cross-Departmental Collaboration for the Community

4

to the client for evaluation and feedback at the end of the iteration. All computer science students
in a team were to be developers with a shared role in project planning and management. Because
this course does not have an associated lab, students schedule their own meetings and time for
project development.

Technical writers were introduced for solving the initial problem that instigated the collaboration:
poor end-user documentation. We wanted to provide the software users with usable documenta-
tion that would enable them to efficiently complete the desired tasks on their new software, and to
reduce the burden on the computer science instructor to provide software support after the prod-
uct had been delivered. The collaboration also provided both groups of student valuable learning
experience in providing quality user documentation for a real-world project. The documents the
teams created collaboratively included a project plan (revised after each iteration), release notes
for each delivery, a user manual, and online help.

Collaborating with the Technical Writers
At the beginning of the semester, the software engineering students were informed of the collabo-
ration; the technical communication students were informed of the collaboration prior to the start
of the semester via emails from their instructor.

To mimic a real-world situation and to effectively work under the sixteen-week time constraint of
a college semester, the first thing the software engineering students learned in their class was their
project deadline. The instructor determined the deadline and required that each software project
consist of five iterations, the deadlines of which were also set by the instructor. The students,
however, were responsible for interviewing their client, listening to the client’s needs, assessing
how a software program could meet those needs, and then determine the extensiveness of the
product. In line with the agile approach to software development, the students also broke the total
extensiveness of the product into the five required iterations, deciding what functionality would
be completed and delivered to the client with each iteration.

After the software engineering students had detailed out their projects, they were assigned one or
two technical communication students. The extensiveness of the project determined whether a
team was assigned one technical writer or two—the teams with more extensive projects were as-
signed two technical writers; the teams with less extensive projects were assigned one technical
writer.

The instructors of the courses had explained to both classes that the technical communicators
would complete the release notes for the client with each iteration, create the final user documen-
tation in the form of an online help file, and provide their expertise to make any team document
more usable. However, the students were to, as a team, determine what specific role the technical
communicators would fill, when they would receive the computer science students’ notes about
each iteration so they could document it, and when they would need to submit the release notes to
the computer science students so the computer science students could provide the notes to the
client with the iteration. The collaborative teams were also to determine how the technical com-
munication students would access the software and how the computer science students would
communicate with them and keep them abreast of the progress of the project.

Schedule
Because project completion was limited to the sixteen weeks within the semester, the students
were allotted no more than two weeks to work on each iteration before providing the iteration’s
deliverable. Table 1 shows the schedule the students were provided, limited to only the mile-
stones for the project:

Chao & Brown

5

Table 1: Semester Schedule

Week(s) Service-learning project task

1 & 2 Introduction to software engineering and the projects.

3 Form software development project teams and role assignments, as well as the software devel-
opment and technical communication combined teams.

4 First customer meet ing and Iteration 0 (I0), wh ich consisted of planning and a requirements
analysis.

5 Second customer meeting to rev iew requirements and project plan.

6 & 7 Work on I1 and accompanying documentation.

8 Deliver I1 (a working system) with accompanying release notes and updated project plan to client.

9 Work on I2 and accompanying documentation.

10 Deliver I2 (a working system) with accompanying release notes and updated project plan to client.

11 Work on I3 and accompanying documentation.

12 Deliver I3 (a working system) with accompanying release notes and updated project plan to client.

13–15 Work on I4. Perform qualitative usability test.

16 Deliver final software product and accompanying documentation (as a compiled help file) to cli-
ent.

Method of Student Communication
The software engineering students did not work on their projects solely in class, but worked asyn-
chronously outside of class as well. The technical communication class was an online class that
semester, so unless the students made an effort to meet face-to-face in their own time, they col-
laborated electronically and usually asynchronously. Because of the asynchronous component of
the collaboration, the students needed effective tools to communicate with one another. In addi-
tion to phone calls and emails, the students also used several online collaboration tools:

• Wikis

• A file exchange server

• Microsoft Visual Studio Team Systems, which includes a version control system

These tools also allowed each student to document the work he or she had done on the project and
keep his or her team members abreast of the progress. Moreover, these tools allowed the instruc-
tors to evaluate each student’s contribution to the project.

Assessment and Evaluation
Challenges/Limitations
Before the semester began, we, the computer science and technical communication instructors,
brainstormed any foreseeable limitations with the collaboration in an effort to negate some of
those limitations and avoid disaster. We determined, based on past experience, that the major
limitation would most likely be time. Most of our students carry full course schedules, are in-
volved in organizations on and off campus, and work a part-time job. It would therefore be diffi-
cult for our students to coordinate group meetings with one-hundred-percent attendance.

Cross-Departmental Collaboration for the Community

6

We decided the best thing we could do to negate the effects of time limits was to design our
courses so that the collaborative service-learning projects served as the focus as well as the cap-
stone of the courses. All class assignments, therefore, were building blocks to completing the pro-
ject by cultivating the skills the students would need for the project. Additionally, the computer
science instructor designated some in-class work days for project.

Assessment
The value of any new approach to learning or teaching can be lost if its effectiveness isn’t evalu-
ated. Therefore, before the semester began, we established a set of criteria to determine if the col-
laborative service-learning project was successful, if it should be continued in the future, and how
it could be improved in the future:

1. Quality of documentation: Is the documentation usable for the clients? We will determine
this by way of client surveys sent one week after final release and two months after final
release. We will also have the students perform a brief qualitative usability test with the
clients.

2. Student feedback: Do the students agree that they learned something valuable from the
project itself and the collaboration? We will determine this through an anonymous survey
at the end of the semester.

3. Student articulation of learning: Can the students point to the goals/benefits of the steps
in the process and relate them to an outcome of the project? Can students identify what
they would do differently next time if they were faced with the same or a similar project?

Survey Results
In order to receive student feedback on the collaboration, we conducted two different surveys—
one for the computer science students in the Software Engineering course and one for the techni-
cal communication students.

Survey of the computer science students
An anonymous survey to the forty-six computer science students was conducted at the beginning
of the second iteration (the ninth week of the semester), to which forty-four students responded.
An overwhelming majority (93%) of the students enjoyed working on their real-world project,
and more than 95% students believed that the skills learned in the class were applicable to the real
world. Forty-three percent of the students felt that the workload in the class was either high or too
high due to the project demand, and less than 5% thought that it was low.

On the questions related to their clients, 93% of the students believed that they understood the
needs of their clients, but only 75% of them thought that their clients were satisfied with their
work so far. While 77% of the students believed that they had acted professionally with their cli-
ents, only 61% of them thought that the communication with the clients was prompt and painless.

Most of the students (80%) felt that they were working with a good team, 79% were satisfied with
the project progress at this point, and 89% of the students were confident that they would produce
a useable system at the end to meet the client’s needs.

Concerning the technical writers on their teams, 75% of the computer science students understood
the contribution by their technical writer, but a mere 45% of them thought the collaboration was
effective, purposeful, and useful. Table 2 below shows more details for the student responses on
the survey questions.

Chao & Brown

7

Table 2: Survey results of the Software Engineering students after the first iteration

Questions Strongly
Agree

Agree Neutral Disagree Strongly
Disagree

I enjoy working on the real-
world project in this course.

25 (56.8%) 16 (36.4%) 2 (4.6%) 1 (2.3%) 0

The skills I learned in this class
are applicab le to the real world.

24 (54.6%) 18 (40.9%) 2 (4.6%) 0 0

The workload of this class is ... Too High
4 (9.1%)

High
15 (34.1%)

Just Right
23 (52.3%)

Low
2 (4.6%)

Too Low
0

My team has worked
with/interacted with the cus-
tomer as professional service
providers would.

8 (18.2%) 26 (59.1%) 10 (22.7%) 0 0

The communicat ion between my
team and the customer has been
prompt and painless.

7 (15.9%) 20 (45.5%) 9 (20.5%) 8 (18.2%) 0

I understand the customer needs
for the system.

16 (36.4%) 25 (56.8%) 2 (4.6%) 1 (2.3%) 0

The customer was satisfied with
the iteration plan presented in
our project plan.

13 (29.6%) 20 (45.5%) 11 (25%) 0 0

I feel that I am working with a
good team.

11 (25%) 24 (54.6%) 7 (15.9%) 2 (4.6%) 0

I am satisfied with the project
progress so far.

7 (15.9%) 28 (63.6%) 5 (11.4%) 4 (9.1%) 0

I am confident that my team will
produce a useable system at the
end that meets the customer
needs.

16 (36.4%) 23 (52.3%) 4 (9.1%) 1 (2.3%) 0

Our collaboration with the tech-
nical communicators on our
team has been effective, pur-
poseful, and useful.

4 (9.1%) 16 (36.4%) 18 (40.9%) 5 (11.4%) 1 (2.3%)

I understand what the technical
communicators contribute to our
team pro ject.

9 (20.5%) 24 (54.6%) 8 (18.2%) 2 (4.6%) 1 (2.3%)

When asked in an open-ended question of “What do you like about this class?” working on a real-
world project and/or interacting with real clients was clearly the student favorite with 25 refer-
ences. Others indicated that they have learned a lot, enjoyed the teamwork, etc. When asked in
another open-ended question of “What do you dislike about this class?” several students disliked
the class examination and a couple of other non-project related issues. On project-related feed-
backs, six students had concerns about the high workload, five students were frustrated with
teamwork problems, and two students were unhappy with the grading mechanism for the project.

Survey of the technical communication students
The technical communication students were asked to complete an online, anonymous survey dur-
ing week thirteen of the semester, just after their documentation for iteration 3 was due. The sur-
vey consisted of twelve statements with which the students were asked to rank their level of
agreement. The instructor did not want to provide them with a “neutral” option as an answer to
any of the questions, but to restrict them to choosing on the side of somewhat agreeing or some-

Cross-Departmental Collaboration for the Community

8

what disagreeing as an alternative to “neutral.” Of the ten students in the course, nine of the stu-
dents completed the survey.

Overall, the technical communication students agreed positively (in varying degrees) with the
statements, suggesting they did indeed see value in the collaboration and their team was, for the
most part, working effectively. Table 3 provides the survey statements and the students’ re-
sponses.

Table 3: Survey results of the technical communication students after the third iteration

Questions
Strongly

Agree Agree
Some-
what
Agree

Some-
what Dis-

agree
Disagree

Strongly
Disagree

I believe this collaboration has
given me an experience similar
to collaborating in a work set-
ting.

4 (44.4%) 2 (22.2%) 0 (0.0%) 2 (22.2%) 0 (0.0%) 1 (11.1%)

I believe that what I have
learned from this collaboration
will be useful in my future ca-
reer.

3 (33.3%) 3 (33.3%) 2 (22.2%) 0 (0.0%) 1 (11.1%) 0 (0.0%)

I have gained beneficial skills in
working with a team through this
collaboration.

3 (33.3%) 3 (33.3%) 1 (11.1%) 2 (22.2%) 0 (0.0%) 0 (0.0%)

I have consistently done the best
work I could do throughout this
collaboration.

4 (44.4%) 5 (55.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Our ENG/CS team has commu-
nicated effectively throughout
this process.

3 (33.3%) 0 (0.0%) 3 (33.3%) 2 (22.2%) 1 (11.1%) 0 (0.0%)

I feel the CS team members ef-
fectively use my skills as a tech-
nical communicator.

2 (22.2%) 3 (33.3%) 1 (11.1%) 0 (0.0%) 1 (11.1%) 2 (22.2%)

Through this collaboration, I
have come to better understand
how to create documents for a
client.

4 (44.4%) 3 (33.3%) 1 (11.1%) 0 (0.0%) 1 (11.1%) 0 (0.0%)

Through this collaboration, I
have come to better understand
how to manage a client relation-
ship.

2 (22.2%) 1 (11.1%) 5 (55.6%) 0 (0.0%) 1 (11.1%) 0 (0.0%)

Our ENG/CS team worked col-
laboratively to determine my
responsibilit ies.

1 (11.1%) 3 (33.3%) 2 (22.2%) 1 (11.1%) 1 (11.1%) 1 (11.1%)

I understood my responsibilities
for the collaboration at the be-
ginning of the semester.

1 (11.1%) 1 (11.1%) 2 (22.2%) 1 (11.1%) 1 (11.1%) 3 (33.3%)

I now understand my responsi-
bilities for the collaboration.

3 (33.3%) 4 (44.4%) 1 (11.1%) 0 (0.0%) 0 (0.0%) 1 (11.1%)

Chao & Brown

9

The one statement the students most disagreed with was “I understood my responsibilities for the
collaboration at the beginning of the semester.” The instructors had intentionally left the specific
responsibilities of the technical communicators vague in order to allow the students to decide
within their teams what tasks exactly the technical communicators would perform and what con-
tributions they would make to the team. They had, as discussed previously, been informed of their
three basic duties: write the release notes and final documentation, and edit to make all team
documents more usable.

However, the survey results for the statement “Our ENG/CS team worked collaboratively to de-
termine my responsibilities” received the second lowest rating for agreement (tying with “I feel
the CS team members effectively use my skills as a technical communicator”), indicating the stu-
dents did not work as a team to determine the specific duties of the technical communicators,
contrasting with the instructors’ expectations for the collaboration.

This lack of team-determined responsibilities for the technical communicators seems as though it
could be connected to the survey results for the statement “I feel the CS team members effec-
tively use my skills as a technical communicator”: perhaps the computer science students did not
know enough about what the technical communicators could bring to the team in order to col-
laboratively decide upon the technical communicators’ tasks and use their expertise efficiently.
This could perhaps also be the reason behind the fact that only 45% of the computer science stu-
dents thought the collaboration was effective. Additionally, the survey of the computer science
students was taken after the first release. A second survey later in the semester might reveal that
they’ve come to better understand the expertise the technical communication students have to
offer and see value in the collaboration.

The technical communication students were also asked to provide qualitative feedback on their
experience up to that point in the semester. Five of the ten students provided comment, and in
general, their comments addressed three main issues:

1. Difficulty communicating with their team.

2. Computer science students’ unfamiliarity with the role of a technical communicator.

3. Their own uncertainty as to their role in the project.

Lessons Learned
We begin our assessment of the success of the project with a partial assessment relative to the
second criterion: student feedback. As a blanket statement, according to the surveys, the students
had difficulty navigating their way through this collaboration; some found value in the collabora-
tion, and some did not.

While the students did not unanimously affirm the value of the collaboration, enough of them did
seem to reflect positively on the experience and see value in it to justify attempting the collabora-
tion with another group of students during another semester when both courses are offered. We,
as the instructors, however, have gained valuable insight from this collaboration, which we will
apply to our next attempt. We’ve categorized these lessons learned into three areas discussed be-
low. Overall, we have learned that for future iterations, we must detail processes to the teams or
provide discussion points for the teams to determine processes among themselves.

Team Collaborations
Most of the problems with team collaborations were a result of poor communication. One prob-
lem was that, contrary to our expectations, our students often didn’t negotiate communication and
workflow on their own. In the future, we will either explicitly tell them to determine their own

Cross-Departmental Collaboration for the Community

10

workflow around their iteration due dates, or we will provide them a step-by-step process, which
is what the technical communication instructor provided her students for the third iteration.

A second problem with communication was the fact that neither the computer science nor the
technical communication students recognized what information they needed to communicate to
their team members from the other course. For example, the technical communication instructor
assumed that the technical communication and computer science students would communicate to
one another about accessing the software program being developed. However, the computer sci-
ence students did not think of telling the technical communicators how to access the software, and
the technical communicators did not think of asking for access to the software.

The final problem resulting from communication was a lack of scheduling within the teams. The
students did not work out a schedule among their team members that would provide deadlines to
complete all work for an iteration. For example, even once the technical communication students
understood that they were to completely revise the computer science students’ release notes, there
was not time for them to do that on some occasions because development took longer than ex-
pected. In future collaborations, the instructors may have to provide the teams with a list of dis-
cussion points for their first meeting to determine roles, responsibilities, access privileges, etc.
We may consider a guaranteed two-day window between when the iteration is done and when the
technical communicators must submit their release notes to the client.

Business Analysis
The technical communication students were not part of the first client meeting, in which the needs
of the client, and, in turn, the requirements for the software, were determined. Therefore, many of
the technical communication students never knew what the defining purpose of the software pro-
gram was and what it was supposed to do for the client.

The technical communicators were involved in subsequent meetings with the client; however,
many of those meetings focused on technicalities and programming aspects that were not appli-
cable to the technical communicators, rather than focusing on the higher-level aspects that would
be relevant to them and the client.

In the future, we would consider involving the technical communicators in the first client meet-
ing. That way, they could understand what role the software fills and what the user’s original
needs were. The technical communicators could also, after hearing the user’s needs, perhaps pro-
vide some suggestions for what the software could do for them. Indeed, they could perhaps help
out with the “business analysis” portion of the project; technical communicators are taught to be
advocates for users and to always think of how to reduce mental burden on their audience.

Documentation
The technical communication instructor assumed that the technical communication students
would know, based upon their previous knowledge in technical communication, that when they
were asked to write user documentation for each iteration, they were not to simply edit the engi-
neer-centered release notes written by the computer science students. Instead, they were to com-
pletely re-work the notes to make them suitable for the user: remove information that was irrele-
vant to the user, write step-by-step instructions for the user to work with the features of the itera-
tion, provide examples to enhance user understanding, etc. The purpose of the computer science
students’ release notes was simply to provide the technical communicators with an update on
what the new features were and how they worked, not to serve as the actual user documentation.

For future collaborations, the technical communication instructor will make certain the technical
communicators understand that the notes provided by the computer science students are not the
user documentation—they are simply scratch notes to the technical communicator about what the

Chao & Brown

11

system should be able to do. The technical communicators are supposed to review the notes, work
with the software, and write the user-centered release notes to accompany delivery of the iteration
to the client.

A second lesson learned in the area of documentation resulted from discrepancies between the
documentation provided to the clients and the documentation provided to the technical communi-
cation instructor. For the first few iterations, the software engineering and technical communica-
tion instructors did not receive the same version of the technical communicators’ release notes.
Apparently, the students created release notes to submit for the client deadline, but then further
revised them to submit to the technical communication instructor, who would then grade the re-
lease notes. That situation was, however, corrected mid-semester; the students were told that they
were to submit the same release notes to the client and their instructor. This will be explained
clearly at the beginning of the semester for the next collaboration.

Conclusion
Though the students did not overwhelmingly agree that they found irreplaceable value in this col-
laboration, there was enough positive feedback from them that the instructors will pursue the col-
laboration in future semesters. They will do so with new insights that will ideally make future
collaborations smoother and help the students see the value of the collaboration more clearly.

The instructors have yet to assess the collaboration based on three of the four pre-established cri-
teria for determining the success of the project. After the end of the semester, the instructors will
survey their students again, asking questions that specifically provide insight into the assessment
criteria of whether students can articulate their learning. Additionally, the instructors will survey
the clients for their feedback on the software and accompanying documentation and compare it to
the feedback from previous semesters to see if there is any improvement in satisfaction with the
deliverable. We believe this type of service-learning collaboration holds significant potential as
an effective pedagogical approach and will continue to transform it as we receive more feedback
at the end of this semester and through future semesters.

Acknowledgements
We would like to thank the following groups of people:

• Our students: for your flexibility and your cooperation as we work through this new type
of collaboration, as well as for your open feedback about the project and what could be
improved in the future.

• Agile Software Factory: for providing the projects for this collaboration and serving as
the connection point with our community partners.

• Agile Alliance: for your interest and support in this service-learning endeavor. We are
certain that your efforts will have a positive effect on the students’ learning and their
value to employers when they graduate.

References
Alfonso, M. I., & Botía, A. (2005). An iterative and agile process model fo r teaching software engineering.

Proceedings of the 18th Conference on Software Engineering Education and Training (CSEET'05),
Ottawa, Canada, April 18-20, 2005, 9-16.

Beck, K. (2000). Extreme programming explained: Embrace change. Addison-Wesley.

Bringle, R. G., & Hatcher, J. A. (1995). A service-learning curricu lum for facu lty. Michigan Journal of
Community Service Learning, 2, 112-122.

Cross-Departmental Collaboration for the Community

12

Carter, L. (2006). Why students with an apparent aptitude for computer science don't choose to major in
computer science. Proceedings of the 37th SIGCSE technical symposium on Computer science educa-
tion. SIGCSE’06, Houston, Texas, USA.

Chao, J. (2005). Balancing hands-on and research activities: A graduate level agile software development
course. Proceedings of the Agile Development Conference (ADC’05).

Chao, J., & Randels, M. (2009). Agile software factory for student service learn ing. Proceedings of the
22nd Conference on Software Engineering Education and Training (CSEE&T '09), Hyderabad, India,
February 17 - 19, 2009.

Chase, J. D., Oakes, E., & Ramsey, S. (2007). Using live pro jects without pain: The development of the
small pro ject support center at Radford University. Proceedings of the 38th SIGCSE Technical Sympo-
sium on Computer Science Education Conference. SIGCSE’07, Covington, Kentucky, USA.

Liu, C. (2005). Enriching software engineering courses with service-learning pro jects and the open-source
approach. The 27th International Conference on Software Engineering (ICSE’05), St. Louis, Missouri,
USA, May 15-21, 2005.

Poger, S., & Bailie, F. (2006). Student perspectives on a real world project. J. Comput. Small Coll. 21(6),
69-75.

Purewal, T. S., Bennett, C., & Maier, F. (2007). Embracing the social relevance: Computing, ethics and the
community. Proceedings of the 38th SIGCSE Technical Symposium on Computer Science Education
Conference. SIGCSE’07, Covington, Kentucky, USA.

Rosmaita, B. J. (2007). Making service learning accessible to computer scientists. Proceedings of the 38th
SIGCSE Technical Symposium on Computer Science Education Conference. SIGCSE’07, Covington,
Kentucky, USA.

Schwaber, K. & Beedle, M. (2001). Agile project management with Scrum. Prentice Hall.

Song, K. (1996). Teaching software engineering through real life projects to bridge school and industry.
SIGCSE Bulletin. 28(4), 59-64.

Tadayon, N. (2004). Software engineering based on the team software process with a real world project. J.
Comput. Small Coll. 19(4), 133-142.

Biography
Dr. Joseph T. Chao is an Associate Professor in the Department of
Computer Science at Bowling Green State University. He has taught
courses in all aspects of the software development lifecycle, including
programming, systems analysis and design, database systems, usability
engineering, and software engineering. Prior to entering academia, Dr.
Chao has more than seven years of industry experience in software
development, including three years as Director of Software Develop-
ment. His research focus is on software engineering with special inter-
ests in agile methods, programming languages, and object-oriented
analysis and design. Dr. Chao is the Director of the Agile Software
Factory at Bowling Green State University, which he founded in 2008
with a grant from the Agile Alliance. The Factory provides students
with service-learning opportunities in software engineering. Dr. Chao
holds an M.S. in Operations Research from Case Western Reserve

University and a Ph.D. in Industrial and Systems Engineering from The Ohio State University.

Chao & Brown

13

Jennifer Brown is an instructor in the Scientific & Technical Com-
munication Program within the Department of English at Bowling
Green State University (BGSU). Jennifer teaches courses in introduc-
tory technical communication, online documentation, and professional
editing. She has been teaching at BGSU since 2005, and previously
worked as a technical writer/trainer for a software and internet market-
ing company. Jennifer has also freelanced as a technical writer, editor,
and consultant for individuals and corporations. She earned her MA in
Technical Communication from Minnesota State University, Mankato.

