

Volume 22, 2025

Editor: Eli Cohen │ Received: January 9, 2025 │ Revised: March 16, April 16, 2025 │ Accepted: May 19, 2025
Cite as: Callahan, M, Claus, J., & Bakke, C. (2025). AI assistance variants in software development cycles. Issues
in Informing Science and Information Technology, 22, Article 16. https://doi.org/10.28945/5539

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

AI ASSISTANCE VARIANTS IN
SOFTWARE DEVELOPMENT CYCLES

Micheal Callahan Grand Canyon University, Phoenix,
AZ, USA

micheal.callahan@icloud.com

Joseph Claus Grand Canyon University, Phoenix,
AZ, USA

joeyclauss27@gmail.com

Emmy Voita Grand Canyon University, Phoenix,
AZ, USA

JVoita@my.gcu.edu

Christine Bakke* Grand Canyon University, Phoenix,
AZ, USA

christine.bakke@gcu.edu

* Corresponding author

ABSTRACT
Aim/Purpose With the technology of artificial intelligence (AI) improving every day it is im-

portant to find ways to harness AI in the software development life cycle
(SDLC). This research demonstrates how AI tools were incorporated into an
upper division Computer Science course to assist with development of various
memory games.

Background Since ChatGPT’s release in 2022, other companies have released rival chatbots
each competing for a piece of the new market. With the plethora of AI options
now available, it is important for a developer to learn to use AI as an assistant
within the development of a custom project.

Methodology The research presented is a multi-case, cross-analysis of four student researchers
in a required, senior level Computer Science course. All students were tasked
with collecting mixed-methods data on two AI assistants, throughout design
and development a unique memory app; then these four students pooled data
and conducted a cross-comparative analysis. To prepare for cross analysis,
standardized Likert rankings and thematic categories were developed and con-
sistently used during data collections. AI assistants evaluated: Claude, Copilot,
ChatGPT Free, and ChatGPT Paid. Throughout the development process, each
student provided both of their AI assistants with the same initial queries, the re-
sults of which were given a Likert ranking and notes were kept regarding AI ac-
curacy. Individual datasets were examined, then pooled and the combined da-

https://doi.org/10.28945/5539
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:micheal.callahan@icloud.com
mailto:joeyclauss27@gmail.com
mailto:JVoita@my.gcu.edu
mailto:christine.bakke@gcu.edu

AI Assistance Variants

2

taset was used to finalize hypothesis findings. The four student-researchers pre-
sented their multi-case, mixed-methods analysis as a snapshot in time regarding
the value of AI as assistants in the development of their projects.

Contribution This paper builds on prior research focusing both on student experience and in-
structional methods in capstone-like courses. This study examines using AIs as
assistants as a current trend in Computer Science education.

Findings During multi-case analysis, two hypotheses were analyzed against the data of
the four student-researchers. The cross examination of data found no statistical
significance between the helpfulness of paid vs. free AI as course project assis-
tants; while non-IDE AI assistants performed significantly better than IDE as-
sistants across 7 out of 8 usage type categories.

Recommendations
for Practitioners

Technology instructors can use this research to incorporate AI assistants into
advanced courses that focus on building custom software, with cautions that
foundational coding skills and knowledge should be in place prior to attempting
complex projects. Companies that are researching how AI can be integrated
into the software development process can use this research to see preferred
strengths of various AI’s, with cautions for use with proprietary data.

Recommendations
for Researchers

Researchers can observe how different AI’s can assist with application develop-
ment. Further research is encouraged as AI capabilities will continue to evolve.

Impact on Society The researchers’ findings show AI in light of its current abilities and limitations
in the software development life cycle. While AI assistants excelled in simple to
medium complexity debugging tasks, there were many complex tasks where a
human coder was preferred over the AI assistants; however, this is expected to
change over time.

Future Research As future technology strengthens AI some aspects of the study may become
historical; however, the core of the research, that of using AI as assistants in de-
velopment of software projects is expected to remain pertinent to education for
some time.

Keywords AI, artificial intelligence, ChatGPT, Claude, Github CoPilot, software develop-
ment life cycle, SDLC

INTRODUCTION
In recent years universities have increasingly incorporated agile methods, such as Scrum, into Com-
puter Science courses to better prepare students for industry work. Incorporating Scrum-based meth-
odologies has been shown to help students adapt to changing requirements and improve collabora-
tion skills (Hsu et al., 2019). In addition, studies on distributed software development highlight that
working in teams, including virtual teams, strengthens development of soft skills in order to better
prepare students for modern work environments (Christensen & Paasivaara, 2022). Other ap-
proaches, such as innovative educational methods and full-stack project experiences, aim to align aca-
demic activities more closely with real-world industry needs (Laval et al., 2021; Metrôlho et al., 2022)
and reduce gaps between academic learning and employer expectations (Sahin & Celikkan, 2020).

It serves a dual purpose to evaluate the effectiveness of AI in the role of a software development as-
sistant and to offer practical experience with agile software development methodologies. Current
Computer Science research investigates human-AI pair programming as a strategy to enhance
productivity and inspire more creative problem-solving in classroom environments (Zhang et al.,
2022). There is interest in examining whether AI tools can produce concise, functional code suitable

Callahan, Claus, & Bakke

3

for both educational and professional contexts (Millam & Bakke, 2024). At the same time, large lan-
guage models (LLMs) and AI coding assistants are gaining attention for their potential to support
programming tasks; however, their effectiveness varies and the level of integration into existing
workflows remains unclear (Liang et al., 2024).

In this study, four student-researchers conducted single-semester AI research in an undergraduate
“Current Trends in Computer Science” course. Working in two-week Scrum sprints, they developed
a simple, custom Unity application with the help of AI. This research tracks four projects, wherein
each student selected two different AI tools to assist them with their project development. Through-
out the project, student-researchers systematically collected data on each AI interaction. The data sets
were categorized and analyzed based on value, with comparisons made between paid and free ver-
sions. Additionally, AI tools that integrated with Integrated Development Environments (IDEs)
were contrasted with those that did not. The students provided a comprehensive analysis of their fif-
teen-week experiences in AI-human collaborative project development, focusing on the integration
of AI as project assistants in creating a Unity app designed to enhance memory skills.

While the research presented is the combined work of four student-researchers; only two student-
researchers followed through with the instructor to finalize the work for publication. The multi-case
study thus presents the work of four student-researchers as they independently developed memory
loss apps in conjunction with testing the helpfulness of two AI assistants in development of a soft-
ware project.

Each of the student-researchers developed a hypothesis; however, during cross case analysis it was
noted that there was significant overlap. To avoid redundancy and highlight the commonalities, the
following two hypotheses are presented in this multi-case analysis:

H1 Hypothesis: Paid AI assistants will significantly outperform free AI assistants in terms
of performance.

H2 Hypothesis: IDE-based AI assistants will significantly outperform non-IDE-based as-
sistants.

Following this introduction, the paper defines key terms, states the research question, and outlines
the hypotheses and objectives. Next, the literature on agile education, industry alignment, and the in-
tegration of AI coding assistants is reviewed. The methodology, including participant selection, data
collection, and analysis procedures, is then described. After presenting and analyzing the data, the pa-
per discusses the findings, addresses ethical considerations, and concludes with insights, limitations,
and suggestions for future research. Finally, the Appendix contains a selection of project snapshots.

LITERATURE REVIEW

The researchers participated in an undergraduate course where they utilized AI throughout the devel-
opment of custom software. This experience was designed based on current trends in the literature,
which highlight the growing use of AI in the industry (Durrani et al., 2024). As AI continues to ex-
pand, Panetta (2023) predicts that by 2027, 70% of professional software developers will use AI-
powered coding tools. These trends, coupled with ongoing industry research, indicate a clear need to
integrate industry-emulating AI into Computer Science courses. Furthermore, Bankins et al. (2024)
explore AI’s evolving role in the workplace, focusing on employee collaboration, perceptions, and
algorithmic management, highlighting the increasing significance of AI in professional settings.

Some researchers express concerns that AI could replace software developers, while others, like
Campbell (2020), foresee a growing role for AI throughout the Software Development Life Cycle
(SDLC). Ebert and Louridas (2023) investigate generative AI’s potential to assist in code generation
and improve productivity but do not examine how developers actually use or perceive these tools in

AI Assistance Variants

4

practice. This gap in understanding AI’s real-world applicability emphasizes the need for students to
become familiar with current trends and challenges in the tech sector. Hands-on collaboration with
AI, as seen in the course, helps students engage directly with these emerging tools and the issues sur-
rounding their use.

Shi et al. (2023) examine how generative AI, specifically GitHub Copilot, can improve code security
by helping developers avoid common coding errors. While they are optimistic about AI’s potential to
enhance security, this perspective contrasts with concerns raised by Perry et al. (2023) and Vaidya
and Asif (2023), who warn that AI-generated code could introduce security vulnerabilities. These
concerns are rooted in the possibility that AI-generated code may contain flaws originating from the
training datasets. This dual-edged nature of AI in coding underscores the importance of developers
understanding AI-generated code fully to ensure its quality and security. It highlights the challenges
of integrating AI into the development process while mitigating potential security risks.

The challenge addressed in this research was to create an AI-integrated software development experi-
ence complex enough to require student guidance but bounded enough to be completed within a 15-
week timeframe. The students not only had to complete individual projects of their own design but
also collect and analyze data comparing two AI models used throughout their development process.
After reviewing the literature, it became clear that this approach was novel, offering a meaningful
software development experience with AI assistants. It also provided an opportunity for students to
learn essential skills in data collection, analysis, and possibly even publication, thus fulfilling the need
for both technical and research-based competencies in the curriculum.

METHODOLOGY

PARTICIPANTS
This study was conducted in a senior-level, undergraduate course entitled, “Current Trends in Com-
puter Science”. The purpose of the course is to provide students with a comprehensive understand-
ing of current trends and practices in Computer Science through practical experiences which vary
each semester. This version of the course incorporated Scrum practices to guide a term project as-
sisted by AI; data was collected throughout the course on the effectiveness of AI as assistants in soft-
ware development.

The methodology of this study closely aligns with that used by Millam and Bakke (2024), as both
studies were conducted within the same course framework. However, the previous project was de-
signed for a client, whereas this project had no client; rather each student determined the design of a
custom memory game specifically targeting those suffering from memory loss. Another difference
can be seen as students developed an individual game until the last weeks of the course, when they
combined the individual games into a single app.

STRENGTHENING RESEARCH VALIDITY
Validity of conclusions is a concern in small sample size studies, but several factors add to the validity
of this study. First, carefully chosen participants are crucial. According to O’Reilly and Parker (2013)
In qualitative research, the adequacy of the sample size is determined by the richness of the data ra-
ther than the number of occurrences. As a result, participants should be selected based on how well
they represent the research topic. (Morse et al., 2002). This supports the idea that small, carefully
chosen samples are valid if they provide rich, in-depth data.

Validity was strengthened across the study through homogeneity of participants, use of multiple AI’s,
consistent data collection, standard analysis methods, and mixed methods analysis. The study took
place in a required course, resulting in homogeneity of participants; this is seen to reduce variance
unrelated to the study’s focus, which can be seen in demonstrated consistency in patterns across par-
ticipants.

Callahan, Claus, & Bakke

5

The focus of the research further strengthens data validity. In theory, individuals with a clear and fo-
cused idea typically have a corresponding research agenda, which helps shape the direction of data
collection. This process establishes specific parameters and areas of interest, within which data satu-
ration can be reached. (O’Reilly & Parker, 2013). This supports the study’s design, which is narrowly
focused on AI performance in specific contexts, namely simple memory game development. This
narrow scope increases the potential of achieving saturation within the study’s focus.

The utilization of mixed methods and cross-case analysis also increases validation of findings by cor-
relating data from four different student-researcher perspectives. As Cresswell and Cresswell (2018)
outline, mixed methods research integrates both qualitative (open-ended) and quantitative (closed-
ended) data to address research questions or hypotheses. This approach utilizes rigorous methods
(i.e., data collection, analysis, and interpretation) of both quantitative and qualitative frameworks,
merging the methods to provide a more comprehensive understanding of the research problem.

Throughout the development process, whenever a student sought assistance from their AI assistants,
they recorded both the question and the resulting answer. Additionally, they rated the response using
a Likert scale and provided explanatory notes to justify their ranking. To address concerns about po-
tential bias in individual datasets, the four student-researchers combined their datasets for cross-com-
parative Likert and thematic analysis against each hypothesis. The course multi-case research design
is shown in Figure 1.

Figure 1: Multi-case project design, individual & group.

Even if saturation cannot be fully achieved, this study focuses more on exploratory insights, rather
than drawing definitive conclusions, thus maintaining validity. As O’Reilly and Parker (2013) state,
transparency about failing to reach saturation does not automatically invalidate the findings. Instead,
it indicates that the phenomenon may not have been fully explored, rather than suggesting the results
are unreliable or incorrect (Morse, 1995). This approach supports the exploratory nature of the study,
suggesting areas for larger-scale investigations.

Lastly, to support some level of generalizability, we will evaluate the conclusions using regular data
collections using both qualitative and quantitative methods; qualitative data collection was employed

AI Assistance Variants

6

with thematic analysis along with quantitative Likert data examination. As highlighted in prior re-
search, alignment with existing work and the clarity of emerging themes can justify the validity and
generalizability of results, even in studies with small sample sizes. As Vasileiou et al. (2018) found in
their analysis of qualitative health research, the validity of the results was supported by the clarity and
distinctness of the emerging themes, as well as their alignment with existing relevant research. Alt-
hough the sample size was small, the narratives revealed clear themes that were adequate for the pur-
poses of this exploratory study (SHI98).”

DATA COLLECTION METHODS
At the beginning of the course each student selected two AI assistants based on individually deter-
mined criteria; this resulted in a variety of AI assistants being utilized, tested, and analyzed. The inclu-
sion of multiple AI assistants was seen to broaden the scope of the study, strengthen the generaliza-
bility of its conclusions, and provide a greater range of experiences for participants.

Each student began the course by designing a custom user interface (UI) for a memory app which
could benefit everyone, but was tailored for use by elderly, dementia patients. Unity was used for de-
velopment as all students had at least one prior Unity course. The course was small, consisting of
only eight senior Computer Science students; although students conducted their studies inde-
pendently, analysis underwent both individual and small group analysis; the eight student-researchers
in the course were divided into two groups, randomly selected by the professor, for the small group,
analysis. The course consisted of eight, two-week sprints, in which participants used Trello or Jira to
keep track of major and minor tasks. This paper describes the results from one of these groups of
four. Each sprint contained one stand-up at the end, in which students would each present their pro-
ject by addressing three-questions of Scrum along with screenshots and an explanation for each ques-
tion:

 1. Which tasks did you complete this sprint?
 2. Which tasks will you be working on during the next sprint?
 3. What is the greatest challenge you are currently facing?

Before data collection, a common five-level ranking was determined as a class and used consistently
among students. Each interaction with AI was ranked using the Likert scale, to track general AI per-
formance and ensure consistency in performance assessment across participants. This Likert scale
closely reflects AI tool capabilities at the time, recognizing that the perception of what defines a
“high quality” vs. “low quality” AI experience varied somewhat between participants. The Likert
ranking used across all data collections is shown in Table 1.

Table 1. Likert rankings, common across all research projects.
Student determined, consistent Likert and note rankings; used across all data collections

Meaning Ranking

1 star: Tried up to three times, but the AI response is com-
pletely unusable

2 star: First AI response was on track enough to keep tweak-
ing. 5 tweaks or more and it is now somewhat usable.

3 star: AI response was on the right track; 3 – 4 tweaks to get
usable helpful result.

Callahan, Claus, & Bakke

7

Meaning Ranking

4 star: AI response was close or what I needed, but nothing
more. 1-2 minimal tweaks if needed.

5 star: AI did better than I had hoped for with the first re-
sponse. Excellent.

Students developed the initial app individually through week twelve, collaborating in the groups of
four for data analysis, presentations, and troubleshooting. Each student used two AI assistants, pos-
ing the same initial query to both. Midway through and at the end of the course, each small group
compiled and compared their AI data, reporting on the value of their assistants both individually and
comparatively. Throughout the term project, students were required to record and evaluate a mini-
mum of four AI queries each sprint.

To assess AI performance, students asked the same query to both assistants, treating the query as the
independent variable. While both AIs received the same initial question, follow-up queries based on
each AI’s responses led to slight variations in the total number of queries.

In addition to rating AI performance on a Likert scale, students documented the date, initial prompt,
and notable response characteristics for each iteration. While Likert data was directly analyzed, notes
were organized by combining all class datapoints and looking for themes. Once the students deter-
mined common themes, the notes were grouped by theme and analyzed, separate from their Likert
ranking. This data was used for detailed comparisons at the end of data collection. An example of a
data entry can be seen in Table 2.

Table 2: Example of a data entry.
Ranking represents the Likert scale rating used to assess AI performance, while
Results/Notes are the notable response characteristics as previously mentioned.

Importantly, the quality and detail of the notable response characteristics varied significantly between
individual students. This inconsistency occurred because a definition for what needed to be included
wasn’t explicitly established before data collection began, leaving the recorded information to depend
on individual understanding of what might be important based on their hypotheses.

DATA ANALYSIS PROCEDURES
At the conclusion of the term project development in week twelve, AI interaction responses were an-
alyzed based on several key qualitative factors, which were then quantitatively assessed. These factors
included code quality, response effectiveness, explanation clarity, complexity, time efficiency, and us-
age type. Each student initially reviewed the AI data they had collected individually. To minimize
bias, a multi-case cross-examination of the entire small group dataset was conducted. Both Likert and

AI Assistance Variants

8

thematic analyses were performed, and each student’s hypotheses were evaluated against their small
group’s data results.

In the study Liang et al. (2024), the authors extend an existing study by conducting a large-scale in-
vestigation, specifically focused on the usability challenges of various AI programming assistants, in-
cluding GitHub Copilot. Data was collected through a Qualtrics survey sent out to a target group
that included the successful use cases of AI for survey participants. The authors found 10 types of
situations, which they describe and report the frequencies for. Similarly, this study examines the suc-
cessful use cases of AI assistants, using some of the situations described by Liang et al. (2024) for
qualitative analysis. Not all use cases in this study align perfectly with the situations identified in
Liang et al. (2024), so some additional use cases had to be defined to capture the full range of that
observed. It is worth noting that, while auto-complete was among the most frequent use cases identi-
fied in Liang et al. (2024), auto-complete use cases were not documented in this study. This occurred
despite testing including an IDE that supported auto-complete, namely Copilot. This omission could
be justified as incorporating auto-complete into our data model would have been too complex, but it
does impact the conclusion for H2.

This study also examines AI usage patterns. Data collection is captured over a three-month period,
and project development is composed of eight, two-week sprints. To analyze temporal trends, AI us-
age data was grouped into two halves: the first half (Sprint 1-4) and later half (Sprint 5-8) of project
development. This study examines AI usage patterns, but further insights could be gained using a
larger time-stamped data set, allowing examination of characteristics changing over time.

Use case categories

 Proof-of-concepts. Providing code or recommendations that explore whether a potential
solution would work or determine the best way to implement a system.

 Learning. Using AI assistance to understand new programming languages, libraries, or con-
cepts.

 Efficiency. Using AI tools to “speed up” workflow, such as by avoiding looking up docu-
mentation.

 Code with simple Logic: Generating straightforward code, such as utility functions or sim-
ple algorithms. These tasks involve minimal complexity.

 Implementation Guidance. Providing step-by-step instructions, code, or advice on imple-
menting a solution.

 Debugging. Identifying, diagnosing, and fixing code errors with the help of AI tools.
 Quality Assurance. Generating test cases, identifying edge cases, or ensuring that code is

optimized.
 Design. Using AI tools to assist with design-oriented tasks (i.e., UI placement questions, game

design, etc.)

Each week, a minimum of two data points for each AI were collected, ranked, and reflected upon.
When a student-researcher wished to pose a question to AI, they would ask the same question of
both AI assistants, thus reducing preconceived bias on the abilities of each AI model. AI responses
were ranked using a five-point Likert scale along with notes explaining the reason for the Likert rank-
ing. In this way, student-researchers were able to evaluate and compare AI responses across projects
in a meaningful and consistent manner. Examination of explanatory notes introduced categorical
metrics which were used to further assess AI performance, including: task complexity, and time
saved by assistance.

Callahan, Claus, & Bakke

9

Time saved by AI Assistance

 No Time Saved - The AI assistance did not save any time and likely increased the time
spent.

 Very Little Time Saved - The AI assistance did not save any time, or only saved a minimal
amount of time.

 Neutral - The AI assistance neither saved nor added significant time; it had little impact on
time spent.

 Some Time Saved - The AI assistance saved a considerable amount of time during the task.
 A Lot of Time Saved - The AI assistance saved a significant amount of time and greatly im-

proved efficiency.

Complexity of tasks addressed

 Very Low Complexity. The task involved simple operations or beginner-level concepts
(e.g., creating a basic function or fixing a syntax error).

 Low Complexity. The task required straightforward implementation but with some inter-
mediate-level considerations (e.g., basic algorithm development, or adding a simple UI ele-
ment).

 Moderate Complexity. The task involved integrating multiple components or intermediate-
level problem-solving (e.g., designing and implementing a moderately complex feature, or
debugging multi-step processes).

 High Complexity. The task required advanced problem-solving, concepts, or implementa-
tion (e.g., developing custom algorithms, optimizing performance).

 Very High Complexity. The task involved highly specialized development (e.g., solving
highly intricate debugging issues).

Factors Contributing to High-Quality Responses
Responses that received a 5-star rating from the general AI performance Likert scale were further an-
alyzed to identify contributing factors for high-performing responses, which were condensed into the
following categories:

 Better Explanation of Concepts: Clearer and more detailed explanations that aid under-
standing.

 Preemptively Addressed Follow-Up Questions: Responses that answered potential fol-
low-up questions that were not specifically addressed in the prompt.

 Additional Helpful Code: Offering code beyond what was explicitly requested.
 Additional Considerations: Including solution pros and cons, alternative solutions, or

other helpful suggestions that added to the response.
 Multiple Working Scripts: Provided multiple scripts for multiple solution or approaches to

the same problem, or for implementing a solution across multiple scripts.

Differences in explanation quality emerged as a significant factor to AI performance. To investigate
further, a similar process was applied to explanation quality, which identified the following:

Factors contributing to high-quality explanation

 Clarity and Explanation Quality: Clearer and more detailed explanations of concepts and
solutions. Better explanations that help me learn and understand key considerations. De-
tailed and actionable explanations Extra suggestions for features

AI Assistance Variants

10

 Multiple Solution Routes: Suggestions for multiple solutions or approaches to solving the
problem.

 Implementation Guidance: Detailed implementation instructions or explanations of how
to apply solutions.

 Anticipating Needs and Questions: Preemptively answering follow-up questions or ad-
dressing potential challenges. Including additional considerations or recommendations that I
might not have thought of yet.

 Justification for features: Justifications for solutions and why they work. Quality assurance.

Code quality assessment
Given that context-aware coding assistance is a key advantage of AI integrated with an IDE, this
study also examines code quality differences.

 Code did not work. AI-generated code was entirely unusable.
 Code required Major modifications. Significant alterations were needed.
 Code required no or minor modifications. AI-generated code was functional with minor

adjustments.

Table 3 provides an overview of sprint goals for game development that integrates a student re-
searcher as the lead developer with two AI assistants. At the end of each sprint, students completed
a stand-up as an informal, required presentation addressing the three questions of Scrum. The struc-
ture of the course shown below is for a 15-week, in-person, senior level Computer Science course.

Table 3 Game Project Development Goals

 Software Project AI Research
SPRINT 1 Project set-up (Unity), exploration

of memory-loss needs
Selection of AI assistants, determination of Likert
scale, begin collecting AI data

SPRINT 2 UI/UX design & game flow, project
backlog, sprite

Hypothesis, problem statement, purpose, research
overview

SPRINT 3 Contact, movement, score, user sto-
ries

Methodologies, data analysis introduction

SPRINT 4 Music, settings, troubleshooting,
Sprint Retrospectives

Analysis of data, determination of themes

SPRINT 5 “User” testing – conducted by class-
mates

Midterm research report including initial AI data
analysis, project demonstration

SPRINT 6 Combine four games and add a
menu to select.

Guest speaker, example of published paper and
professional presentation

SPRINT 7 Group game testing, individual
game troubleshooting “polish”

Review and journal formatting

SPRINT 8 Presentation of memory-assistive
games

Presentation, poster, article submission

RESULTS AND DISCUSSION

The analysis revealed distinct patterns in the performance and usage of AI tools, with findings sum-
marized across qualitative and quantitative measures. A comparative graph, listing the quantity of
queries posed to each AI is listed in Figure 2; due to the possibility of individual AI’s being posed
with clarification questions, the total number of queries did not result identical interaction between
each of the AI assistants.

Callahan, Claus, & Bakke

11

Figure 2: Count of questions asked to each AI assistant.

CODE QUALITY AND RELIABILITY
ChatGPT consistently outperformed other AI tools, such as Copilot and Claude, in delivering relia-
ble code. While Copilot struggled with certain prompts, ChatGPT exhibited greater consistency and
fewer instances of failure. Claude performed well in specific scenarios, such as outlining processes for
UI/UX tasks, but required additional prompting for complex implementations. Calculations for cen-
tral tendency based on Likert data can be seen in Figure 3.

Figure 3: Mean (blue), Mode (red), median (yellow) for each AI assistant.

AI Assistance Variants

12

USAGE PATTERNS AND TRENDS
AI usage varied significantly across the project timeline. During the first half, AI tools were primarily
utilized for tasks involving simple logic, learning, and implementation guidance. In the latter half, us-
age shifted toward learning-focused tasks and code with minimal complexity. ChatGPT demon-
strated particular strength in areas like debugging, learning assistance, and conceptual explanations,
while Copilot and Claude were more effective for design and proof-of-concept tasks.

TASK COMPLEXITY AND PERFORMANCE
Performance across all AI tools exhibited a downward trend as task complexity increased. ChatGPT
outperformed other tools in high-complexity tasks, showing a 44.3% improvement over competitors.
However, 92.6% of tasks fell into the simple to moderate complexity range, with no very high com-
plexity tasks due to project limitations.

DESIRED RESPONSE CHARACTERISTICS
ChatGPT received significantly higher 5-star ratings compared to Copilot (51.2% vs. 19.5%), driven
by its ability to provide additional insights, detailed code explanations, and multiple working scripts.
Claude and Copilot were noted for their ability to clearly explain concepts and offer practical solution
routes but fell short of matching ChatGPT’s overall quality.

HYPOTHESES TESTING

1. H1 (Paid AI vs. Free AI): The hypothesis that paid AI tools would significantly outper-
form free AI versions was rejected. Although paid AI demonstrated slightly better reliability,
free AI tools achieved comparable or better results in complexity-related tasks. The mean
difference (.24) did not meet the 5% statistical threshold.

2. H2 (IDE-Integrated AI vs. Non-IDE AI): The hypothesis that IDE-integrated tools
would outperform non-IDE assistants was also rejected. Non-IDE AI tools performed bet-
ter across multiple categories, with a statistically significant mean difference of .43 in favor of
non-IDE assistants.

In order to more thoroughly analyze data collections, each student conducted an individual thematic
analysis of their dataset, specifically notes were grouped into common themes, tabulated and com-
pared. The results were then evaluated against the corresponding hypothesis. Cross-analysis graphs
showing thematic results across the four data sets are shown in Figures 4, 5, 6, and 7.

Callahan, Claus, & Bakke

13

Figure 4: H1 Hypothesis of Paid AI’s (CoPilot and ChatGPT Paid)

vs Free AI’s (Claude and ChatGPT Free) Quantitative Analysis.

Figure 5: H1 Hypothesis of Paid AI’s (CoPilot and ChatGPT Paid)

vs Free AI’s (Claude and ChatGPT Free) Qualitative Analysis.

AI Assistance Variants

14

Figure 6: H2 Hypothesis of IDE AI (CoPilot)

vs Non-IDE AI’s (Claude, ChatGPT Paid, and ChatGPT Free) Quantitative Analysis.

Figure 7: H2 Hypothesis of IDE AI (CoPilot) vs Non-IDE AI’s (Claude, ChatGPT Paid, and ChatGPT
Free) Qualitative Analysis.

OVERALL TRENDS
Individual and group analyses were conducted to evaluate the effectiveness of AI throughout devel-
opment; across all projects, participants kept track of each query they asked their AI assistant. To re-
duce data bias, when students wished to query AI, they were tasked with querying both AI, rather
than selecting one. Students then evaluated both AI responses, keeping brief notes on the helpful-
ness of each response, and providing a ranking. The results indicate that all AI tools achieved aver-

Callahan, Claus, & Bakke

15

age performance ratings above 3 on the Likert scale, indicating general usability with minor modifica-
tions. A key observation was that performance declined as task complexity increased, but AI tools
excelled in low to moderate complexity tasks.

CONCLUSION
In conclusion, the analysis of AI assistants during the development of memory loss apps revealed key
insights into their effectiveness and value. By comparing the performance of paid versus free AI as-
sistants and IDE-based versus non-IDE-based assistants, the study aimed to assess their impact on
project development. The mixed-methods approach, combining both qualitative and quantitative
data, allowed for a comprehensive evaluation of the AI tools’ contributions across different student
projects. Ultimately, the findings offer valuable implications for integrating AI into development pro-
cesses and provide a basis for future research into optimizing AI-assisted project development.

The class expectations were that individuals complete their project development by the end of week
twelve (sprint six), in order to focus the final two sprints on combining the group projects into a sin-
gle app and wrapping up research, presentation, and analysis requirements. The class was split in
meeting this expectation, with all members of one group completing the combined project by the
seventh sprint and each member of the second group completing their individual projects and par-
tially completing the combined group project by the final sprint.

The student researchers were surprised to find that both hypotheses were rejected. The H1 hypothe-
sis of paid AI assistants significantly outperforming the free AI assistants was rejected as there was
not a significant difference between the two types. The H2 hypothesis of IDE AI assistants signifi-
cantly outperforming the Non-IDE assistants was rejected as it was found that Non-IDE assistants
performed significantly better than the IDE AI assistants. Beyond the hypotheses, analysis also re-
vealed that AI assistants averages were all over three, showing that AI on average was able to answer
questions well, with only minor wording modifications from any given student-researcher. Of note
was the examination of patterns which revealed an unexpected trend, common across all AI showing
a decrease in AI assistive value when queried for help with complex coding tasks, i.e., as complexity
increased AI performance significantly worsened, whereas with simple to moderate tasks each of the
AI assistants consistently performed well.

It could be valuable for future researchers to note the class was structured into two-week sprints,
each with well-defined project objectives (Bakke & Sakai, 2022). With the exception of the midterm
and final project presentations, students shared their progress in informal stand-up presentations to
their classmates every two weeks. Although all students have recently completed their undergraduate
studies, several showed enthusiasm for integrating AI into their future work, emphasizing a commit-
ment to ethical practices and safeguarding data privacy. As advancements in technology continue to
enhance AI, certain aspects of this study may eventually become part of history. However, the es-
sence of the research—leveraging AI as collaborative assistants in software project development—is
likely to remain a cornerstone of educational relevance for some time.

LIMITATIONS
The data collected for this study is limited in scope, as it was conducted within an educational setting,
in a required class. While each student-researcher collected data independently over a fifteen-week
period a homogeneous, quasi-experimental setting existed. Conducting a multi-year study was not
possible for the undergraduate seniors, as many had not previously developed a complex software
project during a course. The student researchers also acknowledge that the presented work includes
a limited sample size of four single-case studies which occurred concurrently. The course-wide Likert
ranking scale and themes determined by the class, could be seen as both a strength and a possible
weakness.

AI Assistance Variants

16

Moreover, the AI selection process was unbounded, allowing students to choose any AI tool that in-
terested them, essentially any AI they thought would be helpful for their project development. While
this flexibility led to unexpected conclusions for the students, the resultant data may not offer suffi-
cient depth for researchers outside of an undergraduate educational context. As such, the findings are
likely more valuable for understanding the experiential learning process within an academic setting,
than for generalizable insights applicable to broader research or professional environments outside of
education.

REFERENCES
Bakke, C., & Sakai, R. (2022). Using design-based research to layer career-like experiences onto software devel-

opment courses. Journal of Information Technology Education: Innovations in Practice, 21, 25–60.
https://doi.org/10.28945/4988

Bankins, S., Ocampo, A. C., Marrone, M., Restubog, S. L. D., & Woo, S. E. (2024). A multilevel review of arti-
ficial intelligence in organizations: Implications for organizational behavior research and practice. Journal of
Organizational Behavior, 45(2), 159–182. https://doi.org/10.1002/job.2735

Campbell, M. (2020). Automated coding: The quest to develop programs that write programs. Computer, 53(2),
80–82. https://doi.org/10.1109/MC.2019.2957958

Christensen, E., & Paasivaara, M. (2022). Learning soft skills through distributed software development. ICSSP.

Cresswell, J., & Cresswell, D. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed).
SAGE Publications.

Durrani, U. K., Akpinar, M., Adak, M. F., Kabakus, A. T., Öztürk, M. M., & Saleh, M. (2024). A decade of pro-
gress: A systematic literature review on the integration of AI in software engineering phases and activities
(2013-2023). IEEE Access, 12, 171185-171204. https://doi.org/10.1109/ACCESS.2024.3488904

Ebert, C., & Louridas, P. (2023). Generative AI for software practitioners. IEEE Software, 40(4), 30–38.
https://doi.org/10.1109/MS.2023.3265877

Hsu, H., Lin, E., Chang, K., & Hsiao, E. (2019). Practicing scrum in institute course. In Proceedings of the 52nd
Hawaii International Conference on System Sciences (pp. 1–10). https://doi.org/10.24251/HICSS.2019.935

Laval, J., Fleury, A., Karami, A. B., Lebis, A., Lozenguez, G., Pinot, R., & Vermeulen, M. (2021). Toward an
innovative educational method to train students to agile approaches in Higher Education: The A.L.P.E.S.
Education Sciences, 11(6), 267. https://doi.org/10.3390/educsci11060267

Liang, J. T., Yang, C., & Myers, B. A. (2024). A large-scale survey on the usability of AI programming assis-
tants: Successes and challenges. In Proceedings of the IEEE/ACM 46th International Conference on Software Engi-
neering (ICSE ‘24) (Article 52, pp. 1–13). Association for Computing Machinery.
https://doi.org/10.1145/3597503.3608128

Metrôlho, J. C., Ribeiro, F. R., Batista, R., & Graça, P. (2022). Prepare students for software industry: A case
study on an agile full stack project. Proceedings of the Seventeenth International Conference on Software Engineering
Advances (ICSEA 2022), 75–80. https://doi.org/10.18260/1-2--19756

Millam, A., & Bakke, C. (2024). Coding with AI as an assistant: Can AI generate concise computer code? Journal
of Information Technology Education: Innovations in Practice, 23, Article 9. https://doi.org/10.28945/5362

O’Reilly, M., & Parker, N. (2013). ‘Unsatisfactory Saturation’: A critical exploration of the notion of saturated
sample sizes in qualitative research. Qualitative Research, 13(2), 190-197.
https://doi.org/10.1177/1468794112446106

Panetta, K. (2023). Set up now for AI to augment software development. Gartner. https://www.gartner.com/en/arti-
cles/set-up-now-for-ai-to-augment-software-development

Perry, N., Srivastava, M., Kumar, D., & Boneh, D. (2023). Do users write more insecure code with AI assis-
tants? Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security (pp. 2785–
2799). Association for Computing Machinery. https://doi.org/10.1145/3576915.3623157

https://doi.org/10.28945/4988
https://doi.org/10.1002/job.2735
https://doi.org/10.1109/MC.2019.2957958
https://doi.org/10.1109/ACCESS.2024.3488904
https://doi.org/10.1109/MS.2023.3265877
https://doi.org/10.24251/HICSS.2019.935
https://doi.org/10.3390/educsci11060267
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.18260/1-2--19756
https://doi.org/10.28945/5362
https://doi.org/10.1177/1468794112446106
https://www.gartner.com/en/articles/set-up-now-for-ai-to-augment-software-development
https://www.gartner.com/en/articles/set-up-now-for-ai-to-augment-software-development
https://doi.org/10.1145/3576915.3623157

Callahan, Claus, & Bakke

17

Sahin, Y. G., & Celikkan, U. (2020). Information technology asymmetry and gaps between higher education
institutions and industry. Journal of Information Technology Education: Research, 19, 339-365.
https://doi.org/10.28945/4553

Shi, Y., Sakib, N., Shahriar, H., Lo, D., Chi, H., & Qian, K. (2023, June). AI-assisted security: A step towards
reimagining software development for a safer future. Proceedings of the IEEE 47th Annual Computers, Software,
and Applications Conference, Torino, Italy, 991–992. https://doi.org/10.1109/COMPSAC57700.2023.00142

Vaidya, J., & Asif, H. (2023). A critical look at AI-generate software: Coding with the new AI tools is both irre-
sistible and dangerous. IEEE Spectrum, 60(7), 34–39. https://doi.org/10.1109/MSPEC.2023.10177044

Vasileiou, K., Barnett, J., Thorpe, S., & Young, T. (2018). Characterising and justifying sample size sufficiency
in interview-based studies: Systematic analysis of qualitative health research over a 15-year period. BMC
Medical Research Methodology. 18, Article 148. https://doi.org/10.1186/s12874-018-0594-7

Zhang, D., Bin Ahmadon, M. A., & Yamaguchi, S. (2022). Human-ai pair programming by Data Stream and its
application example. 2022 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), 1–4.
https://doi.org/10.1109/icce-asia57006.2022.9954649

APPENDIX
Project Highlights. The project was guided with independent components; previous iterations of
project courses have found that guided projects with some independent components and regular
sprints results in the highest quality software and greatest completion rate of version 1.

Figure 8 shows the initial goal for all projects to be combined into a single app; however, one group
did not complete all individual versions, while the other group did. As a result the instructor modi-
fied the expectation to be a combined group project of four independent projects.

Figure A1: Memory game, individual and small group major tasks. Instructor determined.
Original. Modified 8* to 4*; * is that each student is responsible to assist others as time al-

lows, grade is based on individual completion.

https://doi.org/10.28945/4553
https://doi.org/10.1109/COMPSAC57700.2023.00142
https://doi.org/10.1109/MSPEC.2023.10177044
https://doi.org/10.1186/s12874-018-0594-7
https://doi.org/10.1109/icce-asia57006.2022.9954649

AI Assistance Variants

18

During sprint 1 and 2, students designed the UI/UX for their app; after the flow diagram sketch was
approved, students could begin coding the individual memory game. Figures A2 – A6 are samples
from Sprint 2.

Figure A2: initial, individual UI sketch.

Figure A3: initial, individual, digital UI /UX game flow planning.

Callahan, Claus, & Bakke

19

Figure A4: Figma was used by most students to create UI/UX designs.

Figure A5: individual UI/UX flow diagram.

AI Assistance Variants

20

Figure A6: Mock-up of small group menu, combining multiple games.

Examples of stand-up slides for sprint 7 are shown in Figures A7 – A11

Figure A7: “What I worked on this sprint”

Callahan, Claus, & Bakke

21

Figure A8: Q&A dataset for this sprint for one of student’s AI (ChatGPT)

Figure A9: Q&A dataset for this sprint for student’s other AI (CoPilot)

AI Assistance Variants

22

Figure A10: “What will I work on during the next sprint?”

Figure A11: “What challenges am I working on?”

Callahan, Claus, & Bakke

23

AUTHORS
Micheal Callahan graduated in December 2024 with a Bachelor’s degree
in Computer Science from Grand Canyon University in Phoenix, Ari-
zona. He is currently working in a data analytics position, pursuing his
passion for data science and exploring how new technologies, such as Ar-
tificial Intelligence, can be used to improve the field. He has completed
several projects, with some highlights including a neural network for
deepfake detection, a data analysis project on flight scheduling, and sports
analytics.

Joseph Clauss is a Computer Science student at Grand Canyon Univer-
sity in Phoenix, Arizona, with an emphasis in Business Entrepreneurship.
With a passion for blending technical innovation and real-world applica-
tion, Joseph is focused on developing software solutions that support
user-centered design and entrepreneurial strategy. His academic interests
include software development, game design, AI-assisted learning tools,
and full-stack applications for business scalability. Past projects include
developing Unity-based memory games, integrating VR into educational
simulations, and creating Excel-based financial modeling tools for project

analysis. Joseph is driven by the goal of using technology to solve practical problems and is actively
exploring how to merge coding expertise with entrepreneurial insight to launch future ventures.

Emmy Voita [Information not available]

Dr. Christine Bakke is an Associate Professor at Grand Canyon Univer-
sity in Phoenix, Arizona. She has been a technology instructor since 2008
and earned her doctorate in 2013, specializing in IT with a focus on ro-
botics and coding within educational settings. Dr. Bakke is passionate
about project-based learning, particularly in guided learning environ-
ments. Her professional career spans 18 years in the industry, with exper-
tise in networks, cybersecurity, databases, and programming. Her research
is centered on integrating academic and professional best practices into
agile, active learning methodologies. Past projects include developing
Scrum-inspired chatbots, speech-assistant software, memory-assistive

learning games, and custom IoT devices equipped with tailored software solutions.

	Abstract
	Introduction
	Literature Review
	Methodology
	Participants
	Strengthening Research Validity
	Data Collection Methods
	Data Analysis Procedures
	Use case categories
	Time saved by AI Assistance
	Complexity of tasks addressed
	Factors Contributing to High-Quality Responses
	Factors contributing to high-quality explanation
	Code quality assessment

	Results and Discussion
	Code Quality and Reliability
	Usage Patterns and Trends
	Task Complexity and Performance
	Desired Response Characteristics
	Hypotheses Testing
	Overall Trends

	Conclusion
	Limitations
	References
	Appendix
	Authors

