
Issues in Informing Science and Information Technology Volume 11, 2014

Cite as: McMaster, K., Sambasivam, S., & Wolthuis, S. (2014). Software development using C++: Beauty and the
beast. Issues in Informing Science and Information Technology, 11, 73-84. Retrieved from
http://iisit.org/Vol11/IISITv11p073-084McMaster0442.pdf

Software Development Using C++:
Beauty-and-the-Beast

Kirby McMaster
Lake Forest College, Lake

Forest, IL, USA

kmcmaster@weber.edu

Samuel Sambasivam
Azusa Pacific University,

Azusa, CA, USA

ssambasivam@apu.edu

Stuart Wolthuis
BYU – Hawaii, Laie, HI, USA

stuart.wolthuis@byuh.edu

Abstract
Good programming style plays an important role in producing better software. Good style makes
source code easy to read and to understand. This will usually reduce programming errors and
simplify maintenance. We discuss popular style practices in C++ software development. Then we
present a software program we have developed called UglyCode. UglyCode can be used by in-
structors to demonstrate the effect of various programming style options on code readability. This
software converts "beautiful" C++ source code into "beastly" versions that exaggerate bad pro-
gramming style. Specific examples to illustrate the use of UglyCode are shown. With UglyCode,
programming style effects can be viewed interactively by showing the results when style features
are changed in existing code.

Keywords: Programming style, layout, ugly code, algorithm, C++.

Introduction
Teaching Computer Science students how to become competent programmers must go beyond
explaining the syntax of a programming language. In programming courses, the early focus is on
teaching a computer how to solve a problem (Shustek, 2008). This includes a description of the
main features of a higher-level language (e.g., C++, Java, or Python), along with ways to organize
language statements into modules and working programs.

As students gain programming knowledge, they are introduced to design and implementation of
algorithms (Dijkstra, 1971). Characteristics of algorithms that receive sustained emphasis are cor-

rectness, performance, and efficiency.
Eventually, to become professional pro-
grammers, students must learn to de-
velop systems that satisfy additional
objectives, such as maintainability, us-
ability, reliability, and security. These
properties have become increasingly
important as systems have become lar-
ger, more complex, and interconnected.

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

mailto:kmcmaster@weber.edu
mailto:ssambasivam@apu.edu
mailto:stuart.wolthuis@byuh.edu
mailto:Publisher@InformingScience.org

Software Development Using C++

Programming Objectives
With regard to correctness, programmers always desire to write software that is error-free. Com-
puting professionals with strong mathematics backgrounds tend to focus on logical correctness,
as determined by proofs. A software development group in Australia (Klein et al., 2009) recently
announced that they have finally proven their micro-kernel operating system to be correct.

Textbooks on algorithms provide proofs for many common algorithms (Cormen, Leiserson,
Rivest, & Stein, 2009; Sedgewick & Wayne, 2011). However, proving an algorithm to be correct
does not guarantee that the source code will be without errors. Proofs also do not ensure that the
program meets customer requirements.

Another way to verify program correctness is to perform thorough testing of the software while it
is being developed. A well-designed test plan consists of a broad range of tests, both for individ-
ual parts of the system and for the system as a whole.

Programmers also want to write programs that perform rapidly and make efficient use of com-
puter resources. There are almost always trade-offs between performance and efficiency. In a sys-
tem where multiple processes run concurrently, the primary responsibility for managing these
tradeoffs is delegated to the operating system (Silberschatz, Galvin, & Gagne, 2012). Beyond the
operating system, programmers can improve performance and efficiency through their choice of
algorithms and data structures.

Programmers are introduced to the benefits of modular code in early programming courses (Li-
ang, 2013: Stroustrup, 2013) and data structures courses (Dale, 2011; Drozdek, 2012). The initial
modules are functions and procedures. In object-oriented programming, the design and use of
classes, objects, and encapsulation is a necessary way to manage complexity in larger programs.

Programming courses spend little time directly on maintainability. Most software is not main-
tained by the original developer. Readability is essential for continual code maintenance. The De-
partment of Defense estimates that 60-80% of software life cycle costs are for maintenance.

Modular code improves maintenance efforts, but other programming practices, such as agile de-
velopment and configuration management, can also make code easier to correct and modify. De-
tailed discussions appear in Software Engineering textbooks (Pressman, 2009; Somerville, 2011).

Programming Style
In The Practice of Programming, Kernighan and Pike (1999) ask why we should "bother" with
programming style. "Why worry about style? Who cares what a program looks like if it works?
Doesn't it take too much time to make it look pretty? Aren't the rules arbitrary anyway?"

Programming style involves ways that a programmer can organize and present code to make it
more understandable to other programmers. By making code easier to understand, style im-
provements can contribute to other desirable program characteristics. For example, readable code
is more likely to be correct when initially written. It is easier to modify when changes are re-
quired. Programming style can also assist software testing to verify program correctness.

Customers want programs that are correct, perform well, make efficient use of resources, and
meet requirements. Good programming style helps programmers provide these properties in the
software they develop. We teach programming style because it helps students acquire the ability
to write professional quality code.

The remainder of this paper covers programming style concepts, our UglyCode software, and
C++ code examples. In the next section, we describe style concepts that involve source code lay-
out and content. In the third section, we introduce our UglyCode software, which can be used by

74

McMaster, Sambasivam, & Wolthuis

instructors to display the effect of different style choices on code readability. The fourth section
presents C++ style examples that demonstrate the use of UglyCode.

C++ Programming Style
The purpose of programming style is to help programmers interpret what the code of other pro-
grammers (and their own code) is actually doing. But which programming style is best? Expert
programmers have their own preferred styles for writing code. One common point of consensus is
that style choices should be used consistently.

In The Elements of Programming Style, Kernighan and Plauger (1978) describe a number of style
choices for programmers. We discuss a partial list of their style topics, organized into layout and
content groups.

Program Layout
Program layout consists of techniques to rearrange source code to make it more readable. No con-
tent is added to the code--just changes in spacing.

Blank lines: Blank lines can be added to source code between functions and to group lines of code
together that perform some computing activity. This makes the organization of the code easier to
discern.

Indenting: Another way to visually present lines of code that "belong together" is to use the same
level of indentation for the lines. Because source code can have nested blocks, more than one
level of indentation can be helpful. Indenting is also used to indicate that a statement wraps over
more than one line.

One question that always generates a variety of responses is "how many spaces should I indent?"
Each programmer will have a preferred answer, and many software development environments
provide explicit standards.

Block layout: A block of code is a sequence of statements having the behavior that either all
statements are executed, or none are. In a conditional statement, the block is executed only when
the condition is true. In iterative statements, the block will be executed repeatedly until the con-
tinuation status changes.

An important part of block layout is placing marks in the code where each block starts and ends.
Formatting conventions for blocks depend on the programming language. In a language with
fully-bracketed syntax (e.g., if-endif), the statements include markers for the start and end of
blocks. Some recent languages such as C, C++, and Java use curly braces (e.g., "{ ... }") to mark
blocks (Kernighan & Ritchie, 1988). For these languages, there are differences of opinion on
where to place the curly braces.

Statement length: Early fixed-format higher level languages such as FORTRAN and COBOL
were designed with punched cards in mind, having a maximum of 80 characters per card. In these
languages, a statement will continue across more than one card only if marked in a special way.
Most recent languages are free-format, in that a statement is assumed to continue across multiple
lines until a termination character (e.g., ";") appears. The programmer has the choice of how wide
each line of code should be. Multiple lines, with carefully selected break points, can be used for
longer statements.

75

Software Development Using C++

Providing Content
A programmer can also improve the readability of code by adding information within the state-
ments. Common ways to provide this information are through the choice of names for variables
and the inclusion of comments at appropriate locations in the code.

Variable names: The value of a variable changes during the execution of a program. To allow
references to the current value, a variable must be given a name. Ideally, the name will describe
the attribute represented by the variable. Very short names and heavily abbreviated names can be
cryptic to readers.

Comments: Comments can be placed in source code for most programming languages. Some spe-
cial marking is usually required (e.g., "//") to indicate that the comment will not be executed.
McConnell (2004) recommends that comments be included only if they (1) describe the code's
intent, (2) provide information not in the code, or (3) summarize a section of code. C++ allows
several types of comments: full-line comments, end-line comments, and multiple-line comments.

UglyCode Software
We have written a program called UglyCode to assist instructors in teaching programming style.
The UglyCode software teaches programming style concepts in reverse. The usual forward teach-
ing approach displayed in textbooks shows examples of "ugly" (beast) code, before applying de-
sirable style principles to generate "pretty" (beauty) code.

For UglyCode, the input is a C++ program that has been written to illustrate good programming
style. Using UglyCode, options can be exercised on how to "degrade" the code. Students can see
how much harder it is to understand source code when good style features are removed. Instruc-
tors can demonstrate programming style concepts using both "forward" (textbook) and "reverse"
(UglyCode) examples.

Our explanation of how to use the UglyCode software is organized according to the user-interface
controls that appear on the main screen. The controls include a File menu, six sets of checkboxes
to select code style changes, and two command buttons to transform and restore the original code.

File Menu
This is the only menu choice on the UglyCode screen. It includes the following submenu options.

1. Open: Open an existing source code file, using a "file-chooser" input control. UglyCode is de-
signed for C++ (and Java) programs.

2. Save As: After style selections are made and viewed, the resulting "ugly" version of the original
program can be saved as a text file. To avoid overwriting the input file, the name for the saved
file should differ from the input file name.

3. Exit: This option ends the UglyCode program.

Command Buttons
Two buttons on the lower right-hand corner of the screen are used to invoke actions on the source
code.

Ugly It!: After one or more style options have been selected using the checkboxes, this button
should be clicked to activate the changes on the original source code. The restyled "ugly" code
then appears in the main window.

Reset Text: Clicking this button will restore the code in the window to its original form.

76

McMaster, Sambasivam, & Wolthuis

Checkboxes
Checkboxes are organized into groups, based on style category. Within each group, the check-
boxes act like command buttons, in that at most one box can be checked. The following checkbox
groups are listed on the right-hand side of the UglyCode main screen.

Line spacing
Line spacing choices display how the inclusion or exclusion of blank lines in code can affect pro-
gram readability. Blank lines can make it easier to see which parts of the code belong together.
We include three spacing options.

Remove Blank Lines: Selecting this checkbox causes all blank lines to be removed from the code.
This choice is equivalent to single-spacing.

Double Space Code: Double-spacing rarely appears in production code, although a few develop-
ers embrace it. This style choice is included to contrast with single-spacing. In a work environ-
ment, the extra blank lines in code could be used for inserting notes during code reviews. Stu-
dents often use double-spacing when writing term papers for non-computer courses. We have
seen the equivalent of double-spacing in code from students, when they copy their code into Mi-
crosoft Word. The current default spacing in Word places 10 points at the end of each line, which
students (and lab administrators) often fail to change.

Random Blank Lines: Blank lines do not improve program readability when the lines are inserted
in apparently random locations. This option inserts blank lines randomly into the code. After each
non-blank line, the probability is 1/3 that the next line will be blank. Combined with random in-
denting (described below), this option can lead to "beastly" looking code.

Indenting
We provide three options for the number of spaces that occur on the left side of each line of code.

Remove Indents: With this option, all spaces on the left of each line are trimmed off. All code
starts at the left-side margin. This makes it hard to identify where branching and looping control
structures start and end.

Add Fixed-Size Indents: The "best" size for indenting is an individual preference among pro-
grammers. With this option, the instructor can demonstrate the readability of code with various
indenting sizes. Choosing zero spaces is equivalent to removing all indents. A pop-up window
allows the user to enter the desired number of spaces per indent. Within nested control structures,
multiple levels of indenting can accumulate on a single line.

Add Random Indents: In this selection, each line receives a random indent size of 0 to 16 spaces.
This is certainly not a recommended way to indent, but a similar result sometimes occurs in stu-
dent assignments. Suppose that code is written using an editor with a fixed-size indent (say 4), but
the programmer mixes spaces with tabs. When the code is later brought into a different editor
(e.g., Notepad with tab size 8), the mixture of new tab sizes and old spaces can yield a ragged left
margin for the code. Randomly-indented code can be a "beast" to debug.

Curly Braces
A common layout decision is "where to put curly braces to designate the start and end of blocks."
The decision can be guided by language traditions, as well as by programmer preferences. C,
C++, and Java have separate histories, with different preferred block marking rules. This option
allows the instructor to compare the traditional C-style braces with Java-style braces, allowing
students to form their own opinions.

77

Software Development Using C++

Change to Java Style: With this choice, curly braces defining blocks for loops (while, for) and
branches (if-else) are formatted to have the opening brace on the same line as the decision expres-
sion. Curly braces in other parts of the code are not changed.

Change to C Style: With this choice, curly braces are formatted with each opening brace on its
own separate line. Closing braces in the code are not changed.

Comments
Comments can improve understanding of what the original programmer intended to do, but only
if the comments are well-placed and are "helpful". UglyCode options include (1) removing com-
ments and (2) replacing existing comments with "useless" comments. UglyCode acts only on sin-
gle-line comments that start with "//". Other comment delimiters (e.g., /* and */) are ignored.

Remove Comments: With this option, all comments starting with "//" are removed from the source
code. For full-line comments, the entire line is removed. For an end-line comment, the comment
is removed, but not the source code before the comment.

Change to Useless Comments: This option replaces all full-line and end-line comments with "use-
less" comments. For full-line comments, UglyCode chooses randomly from a list of 29 computer-
humor statements we found on the web. For example, one of our favorite full-line comments is,
"When your hammer is C++, every problem looks like a thumb."

End-line comments are usually shorter, so the program chooses randomly from a list of 11 popu-
lar desserts (to sidetrack hungry programmers). For example, one end-line dessert is: "Chocolate
Mousse".

For both single-line and end-line comments, the replacement comments are not relevant to the
code. Repeating this option will give a different random sample of useless comments.

Variable Names
Many variable naming styles are language specific (e.g., the preference for lower case names in
C). Most naming conventions recommend the use of "meaningful names", subject to possible
name length restrictions. For example, "computedTax" is self-descriptive, while “CT” could be
construed as an eastern US state or a medical diagnostic procedure.

The variable naming options in UglyCode show how atypical naming rules can hinder program
understanding.

Change Case: This option demonstrates how case differences can affect readability. For variables
with common type declarations (e.g., char, int, long, float, double) that appear at the start of a
line, the case of various characters in the variable name are changed (from lower-case to upper-
case, or vice-versa). For example, a lower-case name such as "job_cost" might be changed to
"JoB_CoSt". A name such as "netIncome" could become "NeTINcOmE".

Use Meaningless Names: Whether a variable name is considered "meaningless" depends on the
context. There are many ways to create meaningless names. We chose a simple encryption algo-
rithm, a Caesar cipher, because it is easy to program and generates strange looking names. Each
case-sensitive letter in a name is changed to the letter K positions later in the alphabet (with wrap-
around). The value of shift K varies each time this option is invoked. Non-letters are unchanged.
For example, the variable "best2BUY" using shift K = 3 would become "ehvw2EXB", which
looks quite meaningless.

78

McMaster, Sambasivam, & Wolthuis

Line Breaks
In free-format languages such as C++, the programmer can choose how much of each statement
to place on a line. For long statements, line breaks within a statement can improve the readability
of the code. For short statements, more than one statement can be included on a single line.

Set Line Length: This option shows what the code will look like if a line length is specified. A
pop-up window allows the user to enter a desired minimum line length (e.g., 40). The code is then
reformatted so that when concatenated statements exceed this length, they are split over addi-
tional lines. A line break is placed in the first "safe" position at or beyond the minimum length.
"Safe" is defined to be immediately after the first semicolon (";"), left brace ("{"), right brace
("}"), or plus-sign with space ("+ ") at or beyond the minimum length. These break points are
usually safe, but in some situations they can lead to compile errors.

Remove Line Breaks: This is the ultimate reformatting of source code. All line breaks are re-
moved and replaced with spaces. The program now consists of a single long line, which is what a
compiler sees. Because the UglyCode window shows this line without word-wrap, the window's
bottom slider control must be used to view the entire program. The revised one-line program can
be saved and then viewed in an editor that provides word-wrap (e.g., Notepad).

Note: After making programming style changes, the resulting C++ program can be saved as a text
file. If you are fortunate, the revised program will compile and run. For example, if Remove
Blank Lines, Remove Indents, Remove Comments, Change Case (for Variable Names), and Re-
move Line Breaks are all checked, the reformatted program should execute exactly as before the
changes. The source code is much more "beastly", but the compiler/computer doesn't care.

Code style changes are not cumulative. Each set of selected changes is applied to the original
source code. If an instructor wants to demonstrate the cumulative effects of style changes, she/he
should plan a sequence of changes and then mark cumulative sets of checkboxes for Ugly It! but-
ton clicks.

C++ Style Examples
Several examples of how style concepts can reduce the clarity of a C++ program are described in
this section. Each example uses the sample code for the GCD (greatest common divisor) function
listed below.

long GCD(long n1, long n2)

{

 // Euclidean algorithm for GCD

 long High, Low, Remainder;

 // Initialize High and Low

 if(n1 > n2)

 {

 High = n1; Low = n2;

 }

 else

 {

79

Software Development Using C++

 High = n2; Low = n1;

 }

 // Loop until remainder is 0

 Remainder = High % Low;

 while(Remainder > 0)

 {

 High = Low;

 Low = Remainder;

 Remainder = High % Low;

 }

 return Low;

} // end GCD

Figure 1: Original C++ Code for GCD Function.

The GCD function calculates the greatest common divisor of two integers n1 and n2. We display
UglyCode output to show the beast effect of selected programming style choices on this code.

Remove Blank Lines and Comments
The first C++ example demonstrates the combined effect of removing all blank lines and com-
ments. The code with the comments and blank lines removed is shown in Figure 2.

long GCD(long n1, long n2)

{

 long High, Low, Remainder;

 if(n1 > n2)

 {

 High = n1; Low = n2;

 }

 else

 {

 High = n2; Low = n1;

 }

 Remainder = High % Low;

 while(Remainder > 0)

 {

 High = Low;

 Low = Remainder;

80

McMaster, Sambasivam, & Wolthuis

 Remainder = High % Low;

 }

 return Low;

} // end GCD

Figure 2: Ugly C++ Code With Blank Lines and Comments Removed.

The function name (GCD acronym) suggests the purpose of the function. The shorter transformed
code for the function is still readable, but more effort is required to understand the structure of the
algorithm.

Java Curly Braces with No Indenting
The next C++ example shows how readability suffers when all indenting is removed. The code
without indenting but with Java-style braces is presented in Figure 3.

long GCD(long n1, long n2) {

// Euclidean algorithm for GCD

long High, Low, Remainder;

// Initialize High and Low

if(n1 > n2) {

High = n1; Low = n2;

}

else {

High = n2; Low = n1;

}

// Loop until remainder is 0

Remainder = High % Low;

while(Remainder > 0) {

High = Low;

Low = Remainder;

Remainder = High % Low;

}

return Low;

} // end GCD

Figure 3: Ugly C++ Code With Java-style Braces and No Indenting.

81

Software Development Using C++

The code is reasonably clear, thanks to the comments. The change to Java style braces has little
effect on readability, but it does reduce the number of lines. However, the lack of indentation
makes it harder to distinguish the boundaries of the blocks for the if statement and while loop.

Meaningless Names & Useless Comments
The third C++ example demonstrates how poorly chosen variable names and unhelpful comments
can affect program readability. The transformed code is shown in Figure 4.

long JFG(long q1, long q2)

{

 // Beware of bugs in this code; I have only proved it correct.

 long Kljk, Orz, Uhpdlqghu;

 // You can't make a good program without breaking some egos.

 if(q1 > q2)

 {

 Kljk = q1; Orz = q2;

 }

 else

 {

 Kljk = q2; Orz = q1;

 }

 // When your hammer is C++, every problem looks like a thumb.

 Uhpdlqghu = Kljk % Orz;

 while(Uhpdlqghu > 0)

 {

 Kljk = Orz;

 Orz = Uhpdlqghu;

 Uhpdlqghu = Kljk % Orz;

 }

 return Orz;

} // Hot Fudge Sundae

Figure 4: Ugly C++ Code With Meaningless Names and Useless Comments.

The UglyCode program scrambles the names of variables (and functions) that are type-declared at
the start of a statement. We do not scramble the names of variables declared within statements,
such as argument names and counter variables declared inside loops. The scrambled name
"Uhpdlqghu" is virtually meaningless.

82

McMaster, Sambasivam, & Wolthuis

For comments to be effective, they must provide information that is helpful to programmers who
later read the source code. Instead of removing the comments, we replace them with comments
that have nothing to do with the code (e.g., "A million monkeys...").

The above programming style examples illustrate the utility of the UglyCode software for interac-
tive classroom use. With six style groups and 2-3 choices per group, there are a total of 14 possi-
ble cases involving a single style change. When several style changes are combined, or when the
cumulative effects of a sequence of changes are examined, the number of cases increases dra-
matically. Not all cases will be of equal interest. A variety of sample programs can be prepared to
demonstrate specific style combinations to students.

Summary and Conclusions
In this paper, we discussed how programming style can affect source code understanding. We
related programming style to program features such as correctness, performance, efficiency, and
maintainability. We presented several style options for C++ program layout, such as blank lines,
indenting, and block layout. We also described style features such as variable names and com-
ments that add content to improve readability.

We described a program we have written called UglyCode, which allows an instructor to demon-
strate how style changes affect the clarity of code. Instead of showing an example of "bad"
(beast) code and then making it "pretty" (beauty), UglyCode works in the opposite direction. Pro-
gram input should be a C++ program written in "good" style. Style changes are then requested,
and the resulting degradation of the code can be viewed immediately.

The UglyCode software allows students to see the effect of individual style changes and groups
of changes. Transformed source code can be saved in a text file. Students can attempt to compile
and run the modified code. In this way, they can determine whether or not the style changes dis-
rupt the compiler. It is surprising to see how often style changes are ignored by C++ compilers.

Future Research
We have demonstrated prototypes of the UglyCode software in Programming and Software Engi-
neering courses. The data we have collected from students is largely anecdotal. With a completed
version of UglyCode now available, we plan to measure how well this tool helps students appre-
ciate the importance of good programming style.

Note: An executable version of the UglyCode program, along with the sample C++ program pre-
sented in this paper, can be obtained from the authors.

References
Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2009). Introduction to algorithms (3rd ed). MIT Press.

Dale, N. (2011). C++ plus data structures (5th ed). Jones & Bartlett.

Dijkstra, E. W. (1971). A short introduction to the art of programming. E. W. Dijkstra Archive. Retrieved
from http://www.cs.utexas.edu/users/EWD/

Drozdek, A. (2012). Data structures and algorithms in C++ (4th ed). Cengage Learning.

Kernighan, B. W., & Pike, R. (1999). The practice of programming. Addison-Wesley.

Kernighan, B. W., & Plauger, P. J. (1978). The elements of programming style (2nd ed). McGraw-Hill.

Kernighan, B. W., & Ritchie, D. M. (1988). The C programming language (2nd ed). Prentice Hall.

83

http://www.cs.utexas.edu/users/EWD/

Software Development Using C++

84

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., ... & Winwood, S. (2009, Octo-
ber). Formal verification of an OS kernel. Proceedings of the ACM SIGOPS 22nd symposium on Op-
erating systems principles (pp. 207-220). ACM.

Liang, Y. D. (2013). Introduction to programming with C++ (3rd ed). Prentice Hall.

McConnell, S. (2004). Code complete (2nd ed). Microsoft Press.

Pressman, R. (2009). Software engineering: A practitioner's approach (7th ed). McGraw-Hill.

Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed). Addison-Wesley.

Shustek, L. (2008). Donald Knuth: A life's work interrupted. Communications of the ACM, 51(8), 31-35.

Silberschatz, A., Galvin, P. B., & Gagne, G. (2012). Operating system concepts (9th ed). Wiley.

Somerville, I. (2011). Software engineering (9th ed). Addison-Wesley.

Stroustrup, B. (2013). The C++ programming language (4th ed). Addison-Wesley.

Biographies
Dr. Kirby McMaster recently retired from the Computer Science De-
partment at Weber State University. To remain active, he is currently a
visiting professor in Computer Science at Lake Forest College in Illi-
nois. His primary research interests are in database systems, software
engineering, and frameworks for Computer Science and Mathematics.

Dr. Samuel Sambasivam is Chairman and Professor of the Computer
Science Department at Azusa Pacific University. His research interests
include optimization methods, expert systems, client/server applica-
tions, database systems, and genetic algorithms. He served as a
Distinguished Visiting Professor of Computer Science at the United
States Air Force Academy in Colorado Springs, Colorado for a year.
He has conducted extensive research, written for publications, and de-
livered presentations in Computer Science, data structures, and
Mathematics. He is a voting member of the ACM and is a member of
the Institute of Electrical and Electronics Engineers (IEEE).

Stuart L. Wolthuis is Assistant Professor in the Computer & Informa-
tion Sciences Department at Brigham Young University--Hawaii. His
teaching focus includes software engineering, HCI, and information
assurance. He brings almost 24 years of service in the USAF to the
classroom with real world experiences as a program manager and
software engineer. When not enjoying Hawaii’s great outdoors, his
research interests include melding together information systems and
marine biology. His current project, Ocean View, will link land-locked
educators and students to live underwater ocean views via an educa-
tional website.

	Software Development Using C++:Beauty-and-the-Beast
	Kirby McMasterLake Forest College, Lake Forest, IL, USA
	kmcmaster@weber.edu

	Samuel SambasivamAzusa Pacific University, Azusa, CA, USA
	ssambasivam@apu.edu

	Stuart WolthuisBYU – Hawaii, Laie, HI, USA
	stuart.wolthuis@byuh.edu

	Abstract
	Introduction
	Programming Objectives
	Programming Style

	C++ Programming Style
	Program Layout
	Providing Content

	UglyCode Software
	File Menu
	Command Buttons
	Checkboxes
	Line spacing
	Indenting
	Curly Braces
	Comments
	Variable Names
	Line Breaks

	C++ Style Examples
	Remove Blank Lines and Comments
	Java Curly Braces with No Indenting
	Meaningless Names & Useless Comments

	Summary and Conclusions
	Future Research

	References
	Biographies

